We consider the problem of finding a consistent upper price bound for exotic options whose payoff depends on the stock price at two different predetermined time points (e.g. Asian option), given a finite number of observed call prices for these maturities. A model-free approach is used, only taking into account that the (discounted) stock price process is a martingale under the no-arbitrage condition. In case the payoff is directionally convex we obtain the worst case marginal pricing measures. The speed of convergence of the upper price bound is determined when the number of observed stock prices increases. We illustrate our findings with some numerical computations.
We consider the problem of finding consistent upper price bounds and super replication strategies for exotic options, given the observation of call prices in the market. This field of research is called model-independent finance and has been introduced by [9]. Here we use the link to mass transport problems. In contrast to existing literature we assume that the marginal distributions at the two time points we consider are discrete probability distributions. This has the advantage that the optimization problems reduce to linear programs and can be solved rather easily when assuming a general martingale Spence Mirrlees condition. We will prove the optimality of left-monotone transport plans under this assumption and provide an algorithm for its construction. Our proofs are simple and do not require much knowledge of probability theory. At the end we present an example to illustrate our approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.