Image-based reconstruction of 3D shapes is inherently biased under the occurrence of interreflections, since the observed intensity at surface concavities consists of direct and global illumination components. This issue is commonly not considered in a Photometric Stereo (PS) framework. Under the usual assumption of only direct reflections, this corrupts the normal estimation process in concave regions and thus leads to inaccurate results. For this reason, global illumination effects need to be considered for the correct reconstruction of surfaces affected by interreflections. While there is ongoing research in the field of inverse lighting (i.e. separation of global and direct illumination components), the interreflection aspect remains oftentimes neglected in the field of 3D shape reconstruction. In this study, we present a computationally driven approach for iteratively solving that problem. Initially, we introduce a photometric stereo approach that roughly reconstructs a surface with at first unknown reflectance properties. Then, we show that the initial surface reconstruction result can be refined iteratively regarding non-distant light sources and, especially, interreflections. The benefit for the reconstruction accuracy is evaluated on real Lambertian surfaces using laser range scanner data as ground truth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.