Organic cation transporters (OCTs) can mediate metformin transmembrane transport. We explored metformin pharmacokinetics in relation to genetic variations in OCT1, OCT2, OCT3, OCTN1, and MATE1 in 103 healthy male Caucasians. Renal clearance varied 3.8-fold and was significantly dependent on creatinine clearance (r(2) = 0.42, P < 0.0001), age (r(2) = 0.09, P = 0.002), and OCT1 polymorphisms. Carriers of zero, one, and two low-activity OCT1 alleles (Arg61Cys, Gly401Ser, 420del, or Gly465Arg) had mean renal clearances of 30.6, 33.1, and 37.1 l/h, respectively (P = 0.04, after adjustment for creatinine clearance and age). Immunohistochemical staining of human kidneys demonstrated OCT1 expression on the apical side of proximal and distal tubules. Increased renal clearance, in parallel with the known decreased hepatic uptake, may contribute to reduced metformin efficacy in low-activity genotypes. Renal OCT1 expression may be important not only in relation to metformin but with respect to other drugs as well.
Targeted therapy development in head and neck squamous cell carcinoma (HNSCC) is challenging given the rarity of activating mutations. Additionally, HNSCC incidence is increasing related to human papillomavirus (HPV). We sought to develop an in vivo model derived from patients reflecting the evolving HNSCC epidemiologic landscape, and use it to identify new therapies. Primary and relapsed tumors from HNSCC patients, both HPV+ and HPV−, were implanted on mice, giving rise to 25 strains. Resulting xenografts were characterized by detecting key mutations, measuring protein expression by IHC and gene expression/pathway analysis by mRNA-sequencing. Drug efficacy studies were run with representative xenografts using the approved drug cetuximab as well as the new PI3K inhibitor PX-866. Tumors maintained their original morphology, genetic profiles and drug susceptibilities through serial passaging. The genetic makeup of these tumors was consistent with known frequencies of TP53, PI3KCA, NOTCH1 and NOTCH2 mutations. Because the EGFR inhibitor cetuximab is a standard HNSCC therapy, we tested its efficacy and observed a wide spectrum of efficacy. Cetuximab-resistant strains had higher PI3K/Akt pathway gene expression and protein activation than cetuximab-sensitive strains. The PI3K inhibitor PX-866 had anti-tumor efficacy in HNSCC models with PIK3CA alterations. Finally, PI3K inhibition was effective in two cases with NOTCH1 inactivating mutations. In summary, we have developed an HNSCC model covering its clinical spectrum whose major genetic alterations and susceptibility to anticancer agents represent contemporary HNSCC. This model enables to prospectively test therapeutic-oriented hypotheses leading to personalized medicine.
The epidermal growth factor receptor (EGFR)-directed monoclonal antibody cetuximab is the only targeted therapy approved for the treatment of head and neck squamous cell carcinoma (HNSCC), but is only effective in a minority of patients. Epithelial-to-mesenchymal transition (EMT) has been implicated as a drug resistance mechanism in multiple cancers, and the EGFR and Hedgehog pathways (HhP) are relevant to this process, but the interplay between the two pathways has not been defined in HNSCC. Here we show that HNSCC cells that were naturally sensitive to EGFR inhibition over time developed increased expression of the HhP transcription factor GLI1 as they became resistant after long-term EGFR inhibitor exposure. This robustly correlated with an increase in Vimentin expression. Conversely, the HhP negatively regulated an EGFR-dependent, EMT-like state in HNSCC cells, and pharmacological or genetic inhibition of HhP signaling pushed cells further into an EGFR-dependent phenotype, increasing expression of ZEB1 and VIM. In vivo treatment with cetuximab resulted in tumor shrinkage in four out of six HNSCC patient-derived xenografts; however they eventually re-grew. Cetuximab in combination with the HhP inhibitor IPI-926 eliminated tumors in two cases and significantly delayed re-growth in the other two cases. Expression of EMT genes TWIST and ZEB2 was increased in sensitive xenografts suggesting a possible resistant mesenchymal population. In summary, we report that EGFR-dependent HNSCC cells can undergo both EGFR-dependent and -independent EMT and HhP signaling is a regulator in both processes. Cetuximab plus IPI-926 forces tumor cells into an EGFR-dependent state delaying or completely blocking tumor recurrence.
Summary The protein kinase Bβ (Akt2) pathway is known to mediate insulin-stimulated glucose transport through increasing glucose transporter GLUT4 translocation from intracellular stores to the plasma membrane (PM). Combining quantitative phosphoproteomics with RNAi-based functional analyses, we show that a previously uncharacterized 138-kDa C2 domain-containing phosphoprotein (CDP138) is a substrate for Akt2, and is required for optimal insulin-stimulated glucose transport, GLUT4 translocation, and fusion of GLUT4 vesicles with the PM in live adipocytes. The purified C2 domain is capable of binding Ca2+ and lipid membranes. CDP138 mutants lacking the Ca2+-binding sites in the C2 domain or Akt2 phosphorylation site Ser197 inhibit insulin-stimulated GLUT4 insertion into the PM, a rate-limiting step of GLUT4 translocation. Interestingly, CDP138 is dynamically associated with the PM and GLUT4-containing vesicles in response to insulin stimulation. Together, these results suggest that CDP138 is a key molecule linking the Akt2 pathway to the regulation of GLUT4 vesicle - PM fusion.
Carvedilol is a drug where CYP2D6-related pharmacokinetic variation is apparently not carried forward into pharmacodynamic variation. Although current knowledge does not allow utilizing ADRB1 and ADRB2 genotypes for clinical treatment decisions, our data should stimulate further research on the impact of these genotypes in health and disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.