A set of 35 representative neutral and charged tetrel complexes was investigated with the objective of finding the factors that influence the strength of tetrel bonding involving single bonded C, Si, and Ge donors and double bonded C or Si donors. For the first time, we introduced an intrinsic bond strength measure for tetrel bonding, derived from calculated vibrational spectroscopy data obtained at the CCSD(T)/aug-cc-pVTZ level of theory and used this measure to rationalize and order the tetrel bonds. Our study revealed that the strength of tetrel bonds is affected by several factors, such as the magnitude of the σ-hole in the tetrel atom, the negative electrostatic potential at the lone pair of the tetrel-acceptor, the positive charge at the peripheral hydrogen of the tetrel-donor, the exchange-repulsion between the lone pair orbitals of the peripheral atoms of the tetrel-donor and the heteroatom of the tetrel-acceptor, and the stabilization brought about by electron delocalization. Thus, focusing on just one or two of these factors, in particular, the σ-hole description can only lead to an incomplete picture. Tetrel bonding covers a range of −1.4 to −26 kcal/mol, which can be strengthened by substituting the peripheral ligands with electron-withdrawing substituents and by positively charged tetrel-donors or negatively charged tetrel-acceptors.
The local vibrational mode analysis developed by Konkoli and Cremer has been successfully applied to characterize the intrinsic bond strength via local bond stretching force constants in molecular systems. A wealth of new insights into covalent bonding and weak chemical interactions ranging from hydrogen, halogen, pnicogen, and chalcogen to tetrel bonding has been obtained. In this work we extend the local vibrational mode analysis to periodic systems, i.e. crystals, allowing for the first time a quantitative in situ measure of bond strength in the extended systems of one, two, and three dimensions. We present the study of onedimensional polyacetylene and hydrogen fluoride chains and two-dimensional layers of graphene, water, and melamine-cyanurate as well as three-dimensional ice I h and crystalline acetone. Besides serving as a new powerful tool for the analysis of bonding in crystals, a systematic comparison of the intrinsic bond strength in periodic systems and that in isolated molecules becomes possible, providing new details into structure and bonding changes upon crystallization. The potential application for the analysis of solid-state vibrational spectra will be discussed.
A set of 50 molecules with NF bonds was investigated to determine the factors that influence the strength of a NF bond, with the aim of designing a new class of fluorinating agents. The intrinsic bond strength of the NF bonds was used as bond strength measure, derived from local stretching NF force constants obtained at the CCSD(T)/aug-cc-pVTZ and ωB97XD/aug-cc-pVTZ levels of theory. The investigation showed that the NF bond is a tunable covalent bond, with bond strength orders ranging from 2.5 (very strong) to 0.1 (very weak). NF bond strengthening is caused by a combination of different factors and can be achieved by e.g. ionization. Whereas, the NF bond weakening can be achieved by hypervalency on the N atom, using a N→Ch (Ch: O, S, Se) donor-acceptor type bond with different electron-withdrawing groups. These new insights into the nature of the NF bond were used to propose and design a new class of fluorinating agents. Hypervalent amine-chalcogenides turned out as most promising candidates for efficient electrophilic fluorinating agents.
The characterization of boron-hydrogen compounds is an active research area which encompasses subjects as diverse as the chemistry and structures of closoboranes or the thermal decomposition mechanism of the borohydrides. Due to their high gravimetric hydrogen content, borohydrides are considered as potential hydrogen storage materials. Their thermal decompositions are multistep processes, for which the intermediate products are not easily identified. To help address this issue, we have extensively investigated the vibrational and NMR properties of 21 relevant B m H z− n boron-hydrogen species (m = 1-12; n = 1-14; z = 0-2) within density functional theory. We could thus show that the B3LYP-D2 dispersion-corrected hybrid can be used in combination with the large cc-pVTZ basis set for the reliable prediction of the 11 B and 1 H NMR spectra of the boron-hydrogen species, and also for the reliable prediction of their IR and Raman spectra while taking into account the anharmonicity of their molecular vibrations.
We report the thermodynamic stabilities and the intrinsic strengths of three‐center‐two‐electron B−B−B and B−Hb−B bonds (Hb : bridging hydrogen), and two‐center‐two‐electron B−Ht bonds (Ht : terminal hydrogen) which can be served as a new, effective tool to determine the decisive role of the intermediates of hydrogenation/dehydrogenation reactions of borohydride. The calculated heats of formation were obtained with the G4 composite method and the intrinsic strengths of B−B−B, B−Hb−B, and B−Ht bonds were derived from local stretching force constants obtained at the B3LYP‐D2/cc‐pVTZ level of theory for 21 boron‐hydrogen compounds, including 19 intermediates. The Quantum Theory of Atoms in Molecules (QTAIM) was used to deepen the inside into the nature of B−B−B, B−Hb−B, and B−Ht bonds. We found that all of the experimentally identified intermediates hindering the reversibility of the decomposition reactions are thermodynamically stable and possess strong B−B−B, B−Hb−B, and B−Ht bonds. This proves that thermodynamic data and intrinsic B−B−B, B−Hb−B, and B−Ht bond strengths form a new, effective tool to characterize new (potential) intermediates and to predict their role for the reversibility of the hydrogenation/dehydrogenation reactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.