-Wireless Mesh Sensor Networks are being deployed today in various monitoring and control applications. Some radio network designs, such as ZigBee, presume that radio connectivity is reasonably consistent over time. Others take the opposite approach of presuming that links are entirely unreliable, and build large degrees of physical redundancy into the network in the hope that a collection of redundant but unreliable individual links will result in a reliable overall system. Surprisingly little work has been done in the middle ground, endeavoring to understand the root cause of link failure in real-world factory environments and applying this knowledge in the design of protocols that adaptively detect and use workable radio channels.In collaboration under a Department of Energy grant for the Industries of the Future, General Electric and Sensicast Systems have studied theoretical and actual performance of 2.4 GHz IEEE 802.15.4 radio transceivers on the lab bench and on the factory floor, with particular attention to jamming from 802.11 and multipath fading. Temporal and frequency variations in link quality are explored. The implications for network reliability and protocol design are discussed.
A model for piezoelectric vibration energy harvesting with a piezoelectric cantilever beam is presented. The model incorporates expressions for variable geometry, tip mass, and material constants, and allows the parameterized determination of the voltage and power produced over a purely resistive load. The model is of a lumped-element form, with the base excitation acceleration and voltage representing the effort variables, and the tip velocity and electrical current representing the flow variables. Subsequent to the model's derivation, experimental results are presented and demonstrate the accuracy of the model. As peak power output for existing vibration configurations is typically of interest, several simple optimization studies are then performed on a simple generator configuration to demonstrate the effects of several of the driving geometric and material parameters.
IntroductionAsset health monitoring is attractive for increasing reliability, performance and efficiency. Particularly in industrial environments, condition monitoring of rotating machinery such as electric motors, vacuum pumps and compressors offers a significant opportunity for overall energy savings. By using data published in Department of Energy (DOE) sponsored publications it is estimated that through increased electric motor monitoring and subsequent improved maintenance and proper sizing, an opportunity of 122 trillion BTU of energy exists to be saved by the year 2020. To address this need, the Department of Energy has recently sponsored several research programs to develop technology to support industrial wireless condition monitoring.
Operation of the JLab IR Upgrade FEL at CW powers in excess of 10 kW requires sustained production of high electron beam powers by the driver ERL. This in turn demands attention to numerous issues and effects, including: cathode lifetime; control of beamline and RF system vacuum during high current operation; longitudinal space charge; longitudinal and transverse matching of irregular/large volume phase space distributions; halo management; management of remnant dispersive effects; resistive wall, wake-field, and RF heating of beam vacuum chambers; the beam break up instability; the impact of coherent synchrotron radiation (both on beam quality and the performance of laser optics); magnetic component stability and reproducibility; and RF stability and reproducibility. We discuss our experience with these issues and describe the modus vivendi that has evolved during prolonged high current, high power beam and laser operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.