Cloud computing offers a flexible pay-as-you-go model for provisioning application resources, which enables applications to scale on-demand based on the current workload. In many cases, though, users face the single vendor lock-in effect, missing opportunities for optimal and adaptive application deployment across multiple clouds. Several cloud modelling languages have been developed to support multi-cloud resource management, but still they lack holistic cloud management of all aspects and phases. This work defines the Cloud Application Modelling and Execution Language (CAMEL), which (i) allows users to specify the full set of design time aspects for multi-cloud applications, and (ii) supports the models@runtime paradigm that enables capturing an application's current state facilitating its adaptive provisioning. CAMEL has been already used in many projects, domains and use cases due to its wide coverage of cloud management features. Finally, CAMEL has been positively evaluated in this work in terms of its usability and applicability in several domains (e.g., data farming, flight scheduling, financial services) based on the technology acceptance model (TAM).
Over the time, the type of applications has evolved from batch, compute or memory intensive applications to streaming or even interactive applications. As a result, applications are getting more complex and become long-running. Such applications might require frequent-access to multiple distributed data sources. During application deployment and provisioning, the user can face various issues such as (i) where to effectively place both the data and the computation; (ii) how to achieve required objectives while reducing the overall application running cost. Data could be generated from various sources, including a multitude of devices over IoT environments that can generate a huge amount of data, while the applications are running. An application can further produce a large amount of data. In general, data of such size is usually referred to as Big Data. In general, Big Data is characterised by five properties [1, 2]. These are volume, velocity (means rapid update and propagation of data), variety
The database landscape has significantly evolved over the last decade as cloud computing enables to run distributed databases on virtually unlimited cloud resources. Hence, the already non-trivial task of selecting and deploying a distributed database system becomes more challenging. Database evaluation frameworks aim at easing this task by guiding the database selection and deployment decision. The evaluation of databases has evolved as well by moving the evaluation focus from performance to distribution aspects such as scalability and elasticity. This paper presents a cloud-centric analysis of distributed database evaluation frameworks based on evaluation tiers and framework requirements. It analysis eight well adopted evaluation frameworks. The results point out that the evaluation tiers performance, scalability, elasticity and consistency are well supported, in contrast to resource selection and availability. Further, the analysed frameworks do not support cloud-centric requirements but support classic evaluation requirements.
The age of cloud computing has introduced all the mechanisms needed to elastically scale distributed, cloudenabled applications. At roughly the same time, NoSQL databases have been proclaimed as the scalable alternative to relational databases. Since then, NoSQL databases are a core component of many large-scale distributed applications. This paper evaluates the scalability and elasticity features of the three widely used NoSQL database systems Couchbase, Cassandra and MongoDB under various workloads and settings using throughput and latency as metrics. The numbers show that the three database systems have dramatically different baselines with respect to both metrics and also behave unexpected when scaling out. For instance, while Couchbase's throughput increases by 17% when scaled out from 1 to 4 nodes, MongoDB's throughput decreases by more than 50%. These surprising results show that not all tested NoSQL databases do scale as expected and even worse, in some cases scaling harms performances.
Cloud computing and its computing as an utility paradigm provides on-demand resources allowing the seamless adaptation of applications to fluctuating demands. While the Cloud's ongoing commercialisation has lead to a vast provider landscape, vendor lock-in is still a major hindrance. Recent outages demonstrate that relying exclusively on one provider is not sufficient. While existing cloud orchestration tools promise to solve the problems by supporting deployments across multiple cloud providers, they typically rely on provider dependent models forcing prior knowledge of offers and obstructing flexibility in case of errors. We propose a cloud provider-agnostic application and resource description using a constraint language. It allows users to express resource requirements of an application without prior knowledge of existing offers. Additionally, we propose a discovery service automatically collecting available offers. We combine this with a matchmaking algorithm representing the discovery model and the user-given constraints in a constraint satisfaction problem (CSP) that is then solved. Finally, we manipulate this discovery model during runtime to react on errors. Our evaluation shows that using a constraint-based language is a feasible approach to the provider selection problem, and that it helps to overcome vendor lock-in.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.