Chromobacterium violaceum is one of millions of species of free-living microorganisms that populate the soil and water in the extant areas of tropical biodiversity around the world. Its complete genome sequence reveals (i) extensive alternative pathways for energy generation, (ii) Ϸ500 ORFs for transport-related proteins, (iii) complex and extensive systems for stress adaptation and motility, and (iv) widespread utilization of quorum sensing for control of inducible systems, all of which underpin the versatility and adaptability of the organism. The genome also contains extensive but incomplete arrays of ORFs coding for proteins associated with mammalian pathogenicity, possibly involved in the occasional but often fatal cases of human C. violaceum infection. There is, in addition, a series of previously unknown but important enzymes and secondary metabolites including paraquat-inducible proteins, drug and heavy-metal-resistance proteins, multiple chitinases, and proteins for the detoxification of xenobiotics that may have biotechnological applications.T he genomes of soil-and water-borne free-living bacteria have received relatively little attention thus far in comparison to pathogenic and extremophilic organisms, yet they provide fundamental insights into environmental adaptation strategies and represent a rich source of genes with biotechnological potential and medical utility. A particularly interesting organism of this kind is Chromobacterium violaceum, a Gram-negative -proteobacterium first described at the end of the 19th century (1), which dominates a variety of ecosystems in tropical and subtropical regions. This bacterium has been found to be highly abundant in the water and borders of the Negro river, a major component of the Brazilian Amazon (2) and as a result has been studied in Brazil over the last three decades. These, in general, have focused on the most notable product of the bacterium, the violacein pigment, which has already been introduced as a therapeutic compound for dermatological purposes (3). Violacein also exhibits antimicrobial activity against the important tropical pathogens Mycobacterium tuberculosis (4), Trypanosoma cruzi (5), and Leishmania sp. (6) and is reported to have other bactericidal (2, 7-10), antiviral (11), and anticancer (12, 13) activities.Some other aspects of the biotechnological potential of C. violaceum have also begun to be explored, including the synthesis of poly(3-hydroxyvaleric acid) homopolyester and other shortchain polyhydroxyalkanoates, which might represent alternatives to plastics derived from petrochemicals (14, 15), the hydrolysis of plastic films (16), and the solubilization of gold through a mercury-free process, thereby avoiding environmental contamination (17, 18). These studies, however, have been based on knowledge of only a tiny fraction of the genetic constitution of the organism. In addition, the more basic issues of the mechanisms and strategies underlying the adaptability of C. violaceum, including its observed but infrequent infection of h...
The findings indicate that increased IL-10, -8 and -6 levels may constitute an early predictor of unfavourable outcome in severe TBI patients.
Trauma is the leading cause of death in individuals less than 45 years old worldwide, and up to 50% of trauma fatalities are because of brain injury. Prediction of outcome is one of the major problems associated with severe traumatic brain injury (TBI), and research efforts have focused on the investigation of biomarkers with prognostic value after TBI. Therefore, our aim was to investigate whether cell-free DNA concentrations correlated to short-term primary outcome (survival or death) and Glasgow Coma Scale (GCS) scores after severe TBI. A total of 188 patients with severe TBI were enrolled in this prospective study; outcome variables comprised survival and neurological assessment using the GCS at intensive care unit (ICU) discharge. Control blood samples were obtained from 25 healthy volunteers. Peripheral venous blood was collected at admission to the ICU. Plasma DNA was measured using a real-time quantitative polymerase chain reaction (PCR) assay for the b-globin gene. There was correlation between higher DNA levels and both fatal outcome and lower hospital admission GCS scores. Plasma DNA concentrations at the chosen cutoff point ( ‡ 171,381 kilogenomesequivalents/L) predicted mortality with a specificity of 90% and a sensitivity of 43%. Logistic regression analysis showed that elevated plasma DNA levels were independently associated with death ( p < 0.001). In conclusion, high cell-free DNA concentration was a predictor of short-term mortality after severe TBI.
Biochemical markers of cellular stress/injury have been proposed to indicate outcome after head injury. The aim of the present study was to determine whether plasma von Willebrand factor (VWF) levels correlate with primary outcome and with clinical variables in severe traumatic brain injury (TBI). Forty-four male patients, victims of severe TBI, were analyzed. Clinical outcome variables of severe TBI comprised survival and neurological assessment using the Glasgow Outcome Scale (GOS) at intensive care unit (ICU) discharge. Computerized tomography (CT) scans were analyzed according to Marshall CT classification. Three consecutive venous blood samples were taken: first sample (11.4 +/- 5.2 h after trauma, mean +/- SD), and 24 h and 7 days later. The result of mean plasma VWF concentration was significantly higher in the TBI group (273 U/dL) than in the control group (107 U/dL; p < 0.001). Severe TBI was associated with a 50% mortality rate. Nonsurvivors presented significantly higher APACHE II scores than survivors (nonsurvivors mean, 18.8; survivors mean, 12.7; p < 0.001), and also presented higher scores in Marshall CT classification (nonsurvivors mean, 4.6; survivors mean, 2.7; p < 0.05). There was a significant positive correlation between plasma levels at second plasma sampling and scores in Marshall CT classification (p < 0.05). The sensitivity of plasma VWF concentration in predicting mortality according to the cut-off of 234 U/dL was 64%, with a specificity of 68%. Therefore, VWF increases following severe TBI may be a marker of unfavorable outcome.
Increased serum S100B levels constitute a valid predictor of unfavourable outcome in severe TBI, regardless of the presence of associated multitrauma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.