Plectin, the most versatile cytolinker identified to date, has essential functions in maintaining the mechanical integrity of skin, skeletal muscle and heart, as indicated by analyses of plectin-deficient mice and humans. Expression of plectin in a vast variety of tissues and cell types, combined with a large number of different binding partners identified at the molecular level, calls for complex mechanisms regulating gene transcription and expression of the protein. To investigate these mechanisms, we analyzed the transcript diversity and genomic organization of the murine plectin gene and found a remarkable complexity of its 5'-end structure. An unusually high number of 14 alternatively spliced exons, 11 of them directly splicing into plectin exon 2, were identified. Analysis of their tissue distribution revealed that expression of a few of them is restricted to tissues such as brain, or skeletal muscle and heart. In addition, we found two short exons tissue-specifically spliced into a highly conserved set of exons encoding the N-terminal actin binding domain (ABD), common to plectin and the superfamily of spectrin/dystrophin-type actin binding proteins. Using recombinant proteins we show that a novel ABD version contained in the muscle-specific isoform of plectin exhibits significantly higher actin binding activity than other splice forms. This fine tuning mechanism based on alternative splicing is likely to optimize the proposed biological role of plectin as a cytolinker opposing intense mechanical forces in tissues like striated muscle.
The various plectin isoforms are among the major crosslinking elements of the cytoskeleton. The importance of plectin in epithelia is convincingly supported by the severe skin blistering observed in plectin-deficient humans and mice. Here, we identified plectin 1a (> 500 kDa), a full length plectin variant containing the sequence encoded by the alternative first exon 1a, as the isoform most prominently expressed in human and mouse keratinocytes. In skin sections and cultured keratinocytes, plectin 1a was shown to colocalize with hemidesmosomal structures. In contrast, a second isoform expressed in epithelia, plectin 1c, differing from 1a merely by a short N-terminal sequence, colocalized with microtubules. Expression of plectin 1a, but not of its N-terminal fragment alone, or of a third alternative full length isoform (plectin 1), restored the reduced number of hemidesmosome-like stable anchoring contacts in cultured plectin-null keratinocytes. Our results show for the first time that different isoforms of a cytolinker protein expressed in one cell type perform distinct functions. Moreover, the identification of plectin 1a as the isoform defects in which cause skin blistering in plectin-related genetic diseases, such as epidermolysis bullosa simplex MD and epidermolysis bullosa simplex Ogna, could have implications for the future development of clinical therapies for patients.
SummaryBackgroundOxidized cellulose is a well known and widely used surgical hemostat. It is available in many forms, but manufactured using either a nonregenerated or regenerated process.ObjectiveThis study compares the fiber structure, pH in solution, bactericidal effectiveness, and hemostatic effectiveness of an oxidized nonregenerated cellulose (ONRC; Traumastem®) and an oxidized regenerated cellulose (ORC; Surgicel® Original).MethodsIn vitro, fiber structures were compared using scanning electron microscopy, pH of phosphate buffer solution (PBS) and human plasma were measured after each cellulose was submerged, and bactericidal effect was measured by plating each cellulose with four bacteria. In vivo, time to hemostasis and hemostatic success were compared using a general surgery nonheparinized porcine liver abrasion model and a peripheral vascular surgery heparinized leporine femoral vessel bleeding model.ResultsUltrastructure of ONRC fiber is frayed, while ORC is smooth. ORC pH is statistically more acidic than ONRC in PBS, but equal in plasma. No difference in bactericidal effectiveness was observed. In vivo, ONRC provided superior time to hemostasis relative to ORC (211.2 vs 384.6 s, N = 60/group) in the general surgery model; and superior hemostatic success relative to ORC at 30 (60 vs. 15 %; OR: 13.5; 95 % CI: 3.72–49.1, N = 40/group), 60 (85 vs. 37.5 %; OR: 12.3; 95 % CI: 3.66–41.6), and 90 s (97.5 vs 70.0 %; OR: 21.1, 95 % CI: 2.28–195.9) in the peripheral vascular model.ConclusionONRC provides superior hemostasis and equivalent bactericidal effectiveness relative to ORC, which is likely due to its fiber structure than acidity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.