Botulinum neurotoxin serotype A1 (BoNT/A1) is one of the most dangerous potential bioterrorism agents, and exerts its action by invading motoneurons. It is also a licensed drug widely used for medical and cosmetic applications. Here we report a 2.0 Å resolution crystal structure of BoNT/A1 receptor-binding domain in complex with its neuronal receptor, the glycosylated human SV2C. We find that the neuronal tropism of BoNT/A1 requires recognition of both the peptide moiety and an N-linked glycan on SV2. This N-glycan—conserved in all SV2 isoforms across vertebrates—is essential for BoNT/A1 binding to neurons and its potent neurotoxicity. The glycan-binding interface on SV2 is targeted by a human BoNT/A1-neutralizing antibody currently licensed as an anti-botulism drug. Our studies reveal a new paradigm of host-pathogen interactions, in which pathogens exploit conserved host post-translational modifications to achieve highly specific receptor binding while also tolerating genetic changes across multiple isoforms of receptors.
Gram-positive bacteria are protected by a thick mesh of peptidoglycan (PG) completely engulfing their cells. This PG network is the main component of the bacterial cell wall, it provides rigidity and acts as foundation for the attachment of other surface molecules. Biosynthesis of PG consumes a high amount of cellular resources and therefore requires careful adjustments to environmental conditions. An important switch in the control of PG biosynthesis of Listeria monocytogenes, a Gram-positive pathogen with a high infection fatality rate, is the serine/threonine protein kinase PrkA. A key substrate of this kinase is the small cytosolic protein ReoM. We have shown previously that ReoM phosphorylation regulates PG formation through control of MurA stability. MurA catalyzes the first step in PG biosynthesis and the current model suggests that phosphorylated ReoM prevents MurA degradation by the ClpCP protease. In contrast, conditions leading to ReoM dephosphorylation stimulate MurA degradation. How ReoM controls degradation of MurA and potential other substrates is not understood. Also, the individual contribution of the ~20 other known PrkA targets to PG biosynthesis regulation is unknown. We here present murA mutants which escape proteolytic degradation. The release of MurA from ClpCP-dependent proteolysis was able to activate PG biosynthesis and further enhances the intrinsic cephalosporin resistance of L. monocytogenes. This latter effect required the RodA3/PBP B3 transglycosylase/transpeptidase pair. One murA escape mutation not only fully rescued an otherwise non-viable prkA mutant during growth in batch culture and inside macrophages but also overcompensated cephalosporin hypersensitivity. Our data collectively indicate that the main purpose of PrkA-mediated signaling in L. monocytogenes is control of MurA stability during standard laboratory growth conditions and intracellular growth in macrophages. These findings have important implications for the understanding of PG biosynthesis regulation and β-lactam resistance of L. monocytogenes and related Gram-positive bacteria.
Efficient inhibition of cell-pathogen interaction to prevent subsequent infection is an urgent but yet unsolved problem. In this study, the synthesis and functionalization of novel multivalent 2D carbon nanosystems as well as their antiviral efficacy in vitro are shown. For this reason, a new multivalent 2D flexible carbon architecture is developed in this study, functionalized with sulfated dendritic polyglycerol, to enable virus interaction. A simple "graft from" approach enhances the solubility of thermally reduced graphene oxide and provides a suitable 2D surface for multivalent ligand presentation. Polysulfation is used to mimic the heparan sulfate-containing surface of cells and to compete with this natural binding site of viruses. In correlation with the degree of sulfation and the grafted polymer density, the interaction efficiency of these systems can be varied. In here, orthopoxvirus strains are used as model viruses as they use heparan sulfate for cell entry as other viruses, e.g., herpes simplex virus, dengue virus, or cytomegalovirus. The characterization results of the newly designed graphene derivatives demonstrate excellent binding as well as efficient inhibition of orthopoxvirus infection. Overall, these new multivalent 2D polymer nanosystems are promising candidates to develop potent inhibitors for viruses, which possess a heparan sulfate-dependent cell entry mechanism.
The exceptional toxicity of botulinum neurotoxins (BoNTs) is mediated by high avidity binding to complex polysialogangliosides and intraluminal segments of synaptic vesicle proteins embedded in the presynaptic membrane. One peculiarity is an exposed hydrophobic loop in the toxin’s cell binding domain HC, which is located between the ganglioside- and protein receptor-binding sites, and that is particularly pronounced in the serotypes BoNT/B, DC, and G sharing synaptotagmin as protein receptor. Here, we provide evidence that this HC loop is a critical component of their tripartite receptor recognition complex. Binding to nanodisc-embedded receptors and toxicity were virtually abolished in BoNT mutants lacking residues at the tip of the HC loop. Surface plasmon resonance experiments revealed that only insertion of the HC loop into the lipid-bilayer compensates for the entropic penalty inflicted by the dual-receptor binding. Our results represent a new paradigm of how BoNT/B, DC, and G employ ternary interactions with a protein, ganglioside, and lipids to mediate their extraordinary neurotoxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.