Conductive metal organic frameworks (MOFs) represent a promising class of porous crystalline materials that have demonstrated potential in photo-electronics and photocatalytic applications. However, the lack of fundamental understanding on charge transport (CT) mechanism as well as the correlation of CT mechanism with their structure hampered their further development. Herein, we report the direct evidence of CT mechanism in 2D Cu-THQ MOFs and the correlation of temporal and spatial behaviors of charge carriers with their photoconductivity by combining three advanced spectroscopic methods, including time resolved optical and X-ray absorption spectroscopy and terahertz spectroscopy. In addition to Cu-THQ, the CT in Cu/Zn-THQ after incorporating Zn 2+ guest metal was also examined to uncover the contribution of through space pathway, as the presence of the redox inactive 3d 10 Zn 2+ is expected to perturb the long range in-plane CT. We show that the hot carriers in Cu-THQ generated after photoexcitation are highly mobile and undergo fast localization to a lower energy state (cool carriers) with electrons occupying Cu center and holes in ligands. The cool carriers, which have super long lifetime (>17 ns), are responsible for the long-term photoconductivity in Cu-THQ and transport through the O− Cu−O motif with negligible contribution from interlayer ligand π−π stacking, as incorporation of Zn 2+ in Cu-THQ significantly reduced photoconductivity. These unprecedented results not only demonstrate the capability to experimentally probe CT mechanism but also provide important insight in the rational design of 2D MOFs for photoelectronic and photocatalytic applications.
2D covalent organic frameworks (COFs) have emerged as a promising class of organic luminescent materials due to their structural diversity, which allows the systematic tuning of organic building blocks to optimize emitting properties. However, a significant knowledge gap exists between the design strategy and the fundamental understanding of the key structural parameters that determine their photophysical properties. In this work, we report two highly emissive sp 2 -C-COFs and the direct correlation of the structure (conjugation and aggregation) with their light absorption/emission, charge transfer (CT), and exciton dynamics, the key properties that determine their function as luminescent materials. We show that white light can be obtained by simply coating COFs on an LED strip or mixing the two COFs. Using the combination of time-resolved absorption and emission spectroscopy as well as computational prediction, we show that the planarity, conjugation, orientation of the dipole moment, and interlayer aggregation not only determine the light-harvesting ability of COFs but also control the exciton relaxation pathway and photoluminescent quantum yield.
The generation of a long-lived charge-separated state in versatile π-conjugated two-dimensional covalent organic frameworks (2D COFs), a process essential to extending their great potentials in advanced semiconducting applications, is yet fully elucidated. Herein, we report a systematic investigation of the photophysical properties of three highly crystalline imine-linked 2D COFs using steady-state and transient absorption spectroscopy accompanied by time-dependent density functional theory (TDDFT) calculations. The different electron affinity between 5,5′,5″-(1,3,5-benzenetriyl)tris(2-pyridinecarboxaldehyde) (BTPA) and three tunable electron-donating/accepting triamine monomers dominated the formation of the excited-state, charge-transfer direction, and lifetime. A prominent charge transfer from electron-rich 4,4′,4″-triaminotriphenylamine (TAPA) to BTPA in COF TAPA-BTPA led to the long-lived charge-separated state, which was attributed to a greater degree of delocalization compared to the two other COFs. These results provide fundamental insight into the importance of structure−property correlation for designing advanced photoactive 2D COF materials with the efficient charge transfer and long-lived charge-separated state.
Covalent organic frameworks (COFs) have emerged as a novel class of crystalline porous photocatalytic materials due to their unique properties such as large surface area, tunable porosity, and rigid structure. In this work, we report the direct incorporation of a manganese CO 2 molecular catalyst (MC) into COFs (MnÀ TTA-COF) and the evaluation of its capability as photocatalyst for visible light driven CO 2 reduction to form CO. We found that the photocatalytic activity of MnÀ TTA-COF is quite low, which mainly results from the elimination of the CO ligand in the Mn MC upon light illumination, rendering its short duration in the catalytic reaction. While this is a central concern for the further use MnÀ TTA-COF as a CO 2 reduction catalyst, we found that the stability and efficiency of Mn MC is largely enhanced after being incorporated into COFs with respect to its homogeneous version, suggesting the capability of COFs as heterogeneous platform to incorporate MC and improve the catalytic performance of MC. Moreover, transient absorption spectroscopic studies show that the intramolecular charge transfer lifetime of the Mn-incorporated COF is longer than that in the parent COF, which suggests that charge separation (CS) may occur from the parent COF to the Mn moiety. These results together suggest that COFs may show promise as a platform for creating next-generation photocatalysts with a built-in photosensitizer and MC, which can facilitate CS and enhance the stability and efficiency of the incorporated MC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.