Immunoprophylaxis of porcine postweaning colibacillosis (PWC) caused by enterotoxigenic Escherichia coli (ETEC) expressing F4 fimbriae is an unsolved problem. Just as ETEC strains can exploit intestinal microfold (M) cells as the entry portal for infection, their high transcytotic ability make them an attractive target for mucosally delivered vaccines, adjuvants and therapeutics. We have developed a model of parenteral/oral immunization of 4-weeks-old pigs with either levamisole or vaccine candidate F4ac+ non-ETEC strain to study their effects on de novo differentiation of antigen-sampling M cells. Identification, localization and morphometric quantification of cytokeratin 18 positive M cells in the ileal mucosa of 6-weeks-old pigs revealed that they were: 1) exclusively located within villous epithelial layer, 2) significantly numerous (P< 0.01) in levamisole pretreated/challenged pigs, and 3) only slightly, but not significantly numerous in vaccinated/challenged pigs compared with non-pretreated/challenged control pigs. The fact that levamisole may affect the M cells frequency by increasing their numbers, makes it an interesting adjuvant to study development of an effective M cell-targeted vaccine against porcine PWC.
Short bowel syndrome (SBS) is a severe, life-threatening condition and one of the leading causes of intestinal failure in children. Here we were interested in changes in muscle layers and especially in the myenteric plexus of the enteric nervous system (ENS) of the small bowel in the context of intestinal adaptation. Twelve rats underwent a massive resection of the small intestine to induce SBS. Sham laparotomy without small bowel transection was performed in 10 rats. Two weeks after surgery, the remaining jejunum and ileum were harvested and studied. Samples of human small bowel were obtained from patients who underwent resection of small bowel segments due to a medical indication. Morphological changes in the muscle layers and the expression of nestin, a marker for neuronal plasticity, were studied. Following SBS, muscle tissue increases significantly in both parts of the small bowel, i.e., jejunum and ileum. The leading pathophysiological mechanism of these changes is hypertrophy. Additionally, we observed an increased nestin expression in the myenteric plexus in the remaining bowel with SBS. Our human data also showed that in patients with SBS, the proportion of stem cells in the myenteric plexus had risen by more than twofold. Our findings suggest that the ENS is tightly connected to changes in intestinal muscle layers and is critically involved in the process of intestinal adaptation to SBS.
Short bowel syndrome (SBS) is a severe, life-threatening condition and one of the leading causes of intestinal failure in children. Here we were interested in changes in muscle layers and especially in the myenteric plexus of the enteric nervous system (ENS) of the small bowel in the context of intestinal adaptation. Twelve rats underwent a massive resection of the small intestine to induce an SBS. Sham laparotomy without small bowel transection was performed in 10 rats. Two weeks after surgery, the remaining jejunum and ileum were harvested and studied. Samples of human small bowel were obtained from patients who underwent resection of small bowel segments due to a medical indication. Morphological changes in the muscle layers and the expression of nestin, a marker for neuronal plasticity, were studied. Following a SBS, muscle tissue increases significantly in both parts of the small bowel, jejunum, and ileum. The leading pathophysiological mechanism of these changes is hypertrophy. Additionally, we observed an increased nestin expression in the myenteric plexus in the remaining bowel of SBS. Our human data also showed that in patients with SBS, the proportion of stem cells in the myenteric plexus have risen by more than two times. Our findings suggest that the ENS is tightly connected with changes in intestinal muscle layers and is critically involved in the intestinal adaptation process to SBS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.