Abstract-In this paper a new decomposition method is introduced that splits the image into geometric (or cartoon) and texture parts. Following a total variation based preprocesssing, the core of the proposed method is an anisotropic diffusion with an orthogonality based parameter estimation and stopping condition. The quality criterion is defined by the theoretical assumption that the cartoon and the texture components of an image should be orthogonal to each other. The presented method has been compared to other decomposition algorithms through visual and numerical evaluation to prove its superiority.
In this paper, we propose a novel method for moving foreground object extraction in sequences taken by a wearable camera, with strong motion. We use camera motion compensated frame differencing, enhanced with a novel kernel-based estimation of the probability density function of background pixels. The probability density functions are used for filtering false foreground pixels on the motion compensated difference frame. The estimation is based on a limited number of measurements; therefore, we introduce a special, spatio-temporal sample point selection and an adaptive thresholding method to deal with this challenge. Foreground objects are built with the DBSCAN algorithm from detected foreground pixels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.