The RIG-like helicase (RLH) family of intracellular receptors detect viral nucleic acid and signal through the mitochondrial antiviral signalling adaptor MAVS (also known as Cardif, VISA and IPS-1) during a viral infection [1][2][3][4][5][6] . MAVS activation leads to the rapid production of antiviral cytokines, including type 1 interferons. Although MAVS is vital to antiviral immunity, its regulation from within the mitochondria remains unknown. Here we describe human NLRX1, a highly conserved nucleotide-binding domain (NBD)-and leucine-rich-repeat (LRR)-containing family member (known as NLR) that localizes to the mitochondrial outer membrane and interacts with MAVS. Expression of NLRX1 results in the potent inhibition of RLH-and MAVS-mediated interferon-b promoter activity and in the disruption of virus-induced RLH-MAVS interactions. Depletion of NLRX1 with small interference RNA promotes virus-induced type I interferon production and decreases viral replication. This work identifies NLRX1 as a check against mitochondrial antiviral responses and represents an intersection of three ancient cellular processes: NLR signalling, intracellular virus detection and the use of mitochondria as a platform for anti-pathogen signalling. This represents a conceptual advance, in that NLRX1 is a modulator of pathogen-associated molecular pattern receptors rather than a receptor, and identifies a key therapeutic target for enhancing antiviral responses.Mammalian members of the nucleotide-binding domain (NBD) and leucine-rich-repeat-containing (LRR) (known as NLR, see http://www.genenames.org/genefamily/nacht.html) family of proteins are indispensable for cellular responses to pathogens. This NBD-LRR protein structure is ancient and highly conserved, as shown by its initial identification among plant disease-resistance proteins 7-12 . Current dogma posits that NLRs function as cytoplasmic surveillance molecules that sense intracellular pathogen-associated molecular patterns (PAMPs), or as regulators of pathogen-initiated signalling cascades 13,14 . Viral PAMPs are detected by the cytoplasmic RLH receptors RIG-I (also known as DDX58) and MDA-5 (also known as IFIH1), which signal through the mitochondrial protein MAVS, resulting in the activation of interferon regulatory factor 3 (IRF3) and NF-kB and type-1 interferon transcription [1][2][3][4][5][6] . Abrogation of MAVS expression or function leads to reduced type 1 interferon production and antiviral protection 15 .To study the potential role of NLR proteins in regulating mitochondrial antiviral signalling, we used bioinformatics to identify NLRs localized to the mitochondria. We identified one putative mitochondrial NLR called NLRX1 (previously known as CLR11.3 and NOD9) 9,16 (Fig. 1a). The predicted peptide sequence and distinct domains of NLRX1 are shown in Supplementary Fig. 1. Consistent with the conserved motif structure of the NLR family, NLRX1 contains a central putative NBD and carboxy-terminal LRRs. The assignment of the amino-terminal effector domain to a subclass i...
Inflammation is a crucial element of the host response to cellular insult. Pathogen-induced inflammation includes a molecular pathway which proceeds through activation of the protease caspase-1 to the release of the inflammatory cytokines interleukin-1 (IL-1) and IL-18. Importantly, pathogens may also induce forms of cell death that have inherently pro-inflammatory features. Here, we review recent evidence demonstrating that NLR (nucleotide-binding domain, leucine-rich repeat containing) family proteins serve as a common component of both caspase-1-activated apoptotic pathways and caspase-independent necrotic pathways. Parallels are drawn between NLR protein function and the activity of structurally similar proteins involved in cell death: the apoptotic mediator APAF1 (apoptotic-protease-activating factor 1) and the plant disease resistance NBS-LRR (nucleotide-binding site leucine-rich repeats) proteins.
Cryopyrin (CIAS1, NLRP3) and ASC are components of the inflammasome, a multiprotein complex required for caspase-1 activation and cytokine IL-1beta production. CIAS1 mutations underlie autoinflammation characterized by excessive IL-1beta secretion. Disease-associated cryopyrin also causes a program of necrosis-like cell death in macrophages, the mechanistic details of which are unknown. We find that patient monocytes carrying disease-associated CIAS1 mutations exhibit excessive necrosis-like death by a process dependent on ASC and cathepsin B, resulting in spillage of the proinflammatory mediator HMGB1. Shigella flexneri infection also causes cryopyrin-dependent macrophage necrosis with features similar to the death caused by mutant CIAS1. This necrotic death is independent of caspase-1 and IL-1beta, and thus independent of the inflammasome. Furthermore, necrosis of primary macrophages requires the presence of Shigella virulence genes. While similar proteins mediate pathogen-induced cell death in plants, this report identifies cryopyrin as an important host regulator of programmed pathogen-induced necrosis in animals, a process we term pyronecrosis.
Bacterial infection elicits a range of beneficial as well as detrimental host inflammatory responses. Key among these responses are macrophage/monocyte necrosis, release of the pro-inflammatory factor high-mobility group box 1 protein (HMGB1), and induction of the cytokine IL-1. While the control of IL-1β has been well-studied, processes that control macrophage cell death and HMGB-1 release in animals are poorly understood. This study utilizes Klebsiella pneumonia as a model organism since it elicits all three responses in vivo. The regulation of these responses is studied in the context of the inflammasome components, NLRP3 and ASC, which are important for caspase-1 activation and IL-1β release. Using a pulmonary infection model that reflects human infection, we show that K. pneumonia-induced mouse macrophage necrosis, HMGB-1 and IL-1β release are dependent on NLRP3 and ASC. K. pneumoniae infection of mice lacking Nlrp3 results in decreased lung inflammation and reduced survival relative to control indicating the overall protective role of this gene. Macrophage/monocyte necrosis and HMGB1 release are controlled independently of caspase-1 suggesting that the former two responses are separable from inflammasome-associated functions. These results provide critical in vivo validation that the physiologic role of NLRP3 and ASC is not limited to inflammasome formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.