This is a repository copy of A systematic review of lumped-parameter equivalent circuit models for real-time estimation of lithium-ion battery states.
Balancing the grid at 50 Hz requires managing many distributed generation sources against a varying load, which is becoming an increasingly challenging task due to the increased penetration of renewable energy sources such as wind and solar and loss of traditional generation which provide inertia to the system. In the UK, various frequency support services are available, which are developed to provide a real-time response to changes in the grid frequency. The National Grid (NG)the main distribution network operator in the UKhave introduced a new and fast service called the Enhanced Frequency Response (EFR), which requires a response time of under one second. A battery energy storage system (BESS) is a suitable candidate for delivering such service. Therefore, in this paper a control algorithm is developed to provide a charge/discharge power output with respect to deviations in the grid frequency and the ramp-rate limits imposed by the NG, whilst managing the state-of-charge (SOC) of the BESS for an optimised utilisation of the available stored energy. Simulation results on a 2 MW/1 MWh lithiumtitanate BESS are provided to verify the proposed algorithm based on the control of an experimentally validated battery model.
2019) 'Survey on magnetic resonant coupling wireless power transfer technology for electric vehicle charging. ', IET power electronics.,12 (12). pp. 3005-3020.The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details.Abstract: Wireless Power Transfer technology (WPT) makes it possible to supply power through an air-gap, without the need for current-carrying wires. One important technique of WPT technology is magnetic resonant coupling (MRC) WPT. Based on the advantages of MRC WPT, such as safety and high power transfer efficiency over a long transmit distance, there are many possible applications of MRC WPT. This paper provides a comprehensive, state-of-the-art review of the MRC WPT technology and wireless charging for electric vehicle (EV). A comparative overview of MRC WPT system design which includes a detailed description of the prototypes, schematics, compensation circuit topologies (impedance matching), and international charging standards. In addition, this paper provides an overview of wireless EV charging including the static wireless EV charging and the dynamic wireless EV charging, which focuses on the coil design, power transfer efficiency, and current research achievement in literature.
Grid-connected battery energy storage systems with fast acting control are a key technology for improving power network stability and increasing the penetration of renewable generation. This paper describes two battery energy storage research facilities connected to the UK electricity grid. Their performance is detailed, along with hardware results, and a number of grid support services are demonstrated, again with results presented. The facility operated by The University of Manchester is rated at 236kVA, 180kWh, and connected to the 400V campus power network, The University of Sheffield operates a 2MVA, 1MWh facility connected to an 11kV distribution network.
This paper presents the results of a series of tests to determine the Dynamic Charge Acceptance (DCA) performance of small form-factor carbon-enhanced VRLA cells designed for use in Hybrid Electric Vehicle (HEV) applications, together with standard lead-acid and lithium iron phosphate (LFP) cells. The results demonstrate how varying the conditions and parameters of the standard DCA test regime can provide a superior evaluation of DCA performance and lead to a better understanding of cell behaviour under real-world conditions. A modified test procedure is proposed, based on the DCA Short Test profile (EN50342-6). Results are presented for a batch of carbon-enhanced cells, tested at various temperatures, rest periods and States of Charge (SoC) for the cell. These conditions having been chosen to mimic a range of real-life scenarios which could potentially be encountered during HEV operation. The resulting analysis demonstrates clear variations and trends in DCA performance which may be used to inform conditions for future testing regimes. The modified test procedure is then applied to standard lead-acid and LFP 26650-type cells and the results compared.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.