The Mars Global Surveyor (MGS)
z
-axis accelerometer has obtained over 200 vertical structures of thermospheric density, temperature, and pressure, ranging from 110 to 170 kilometers, compared to only three previous such vertical structures. In November 1997, a regional dust storm in the Southern Hemisphere triggered an unexpectedly large thermospheric response at mid-northern latitudes, increasing the altitude of thermospheric pressure surfaces there by as much as 8 kilometers and indicating a strong global thermospheric response to a regional dust storm. Throughout the MGS mission, thermospheric density bulges have been detected on opposite sides of the planet near 90°E and 90°W, in the vicinity of maximum terrain heights. This wave 2 pattern may be caused by topographically-forced planetary waves propagating up from the lower atmosphere.
Magellan started mapping the planet Venus on September 15, 1990, and after one cycle (one Venus day or 243 Earth days) had mapped 84% of the planet's surface. This returned an image data volume greater than all past planetary missions combined. Spacecraft problems were experienced in flight. Changes in operational procedures and reprogramming of onboard computers minimized the amount of mapping data lost. Magellan data processing is the largest planetary image‐processing challenge to date. Compilation of global maps of tectonic and volcanic features, as well as impact craters and related phenomena and surface processes related to wind, weathering, and mass wasting, has begun. The Magellan project is now in an extended mission phase, with plans for additional cycles out to 1995. The Magellan project will fill in mapping gaps, obtain a global gravity data set between mid‐September 1992 and May 1993, acquire images at different view angles, and look for changes on the surface from one cycle to another caused by surface activity such as volcanism, faulting, or wind activity.
The Mars Global Surveyor spacecraft was launched on November 6, 1996 and was captured into a highly elliptical, 45 hour orbit around Mars with a 973 m/s propulsive maneuver on September 12, 1997. A four month aerobraking phase was supposed to remove another 1200 m/s in order to circularize the orbit. Unfortunately, one of the two solar wings was damaged during deployment just after launch when the deployment damper failed. This paper will describe what has happened so far in order to achieve the original mission objectives and will discuss the plans for the future of the Mars Global Surveyor Spacecraft.
On the morning of January 15, 2006, the Stardust capsule successfully landed at the Utah Test and Training range in northwest Utah returning cometary samples from the comet Wild-2. An overview of the entry, descent, and landing (EDL) trajectory analysis that was performed for targeting during the mission operations phase upon final approach to Earth is described. The final orbit determination solution produced an inertial entry flight-path angle of -8.21 deg (the desired nominal value) with a 3-σ uncertainty of ±0.0017 deg (2% of the requirement). The navigation and EDL operations effort accurately delivered the entry capsule to the desired landing site. The final landing location was 8.1 km from the target, which was well within the allowable landing area. Overall, the Earth approach operation procedures worked well and there were no issues (logistically or performance based) that arose. As a result, the process of targeting a capsule from an interplanetary trajectory and accurately landing it on Earth was successfully demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.