Single-strand breaks (SSBs) can occur in cells either directly, or indirectly following initiation of base excision repair (BER). SSBs generally have blocked termini lacking the conventional 5′-phosphate and 3′-hydroxyl groups and require further processing prior to DNA synthesis and ligation. XRCC1 is devoid of any known enzymatic activity, but it can physically interact with other proteins involved in all stages of the overlapping SSB repair and BER pathways, including those that conduct the rate-limiting end-tailoring, and in many cases can stimulate their enzymatic activities.
Background: Cells respond to environmental stressors through several key pathways, including response to reactive oxygen species (ROS), nutrient and ATP sensing, DNA damage response (DDR), and epigenetic alterations. Mitochondria play a central role in these pathways not only through energetics and ATP production but also through metabolites generated in the tricarboxylic acid cycle, as well as mitochondria–nuclear signaling related to mitochondria morphology, biogenesis, fission/fusion, mitophagy, apoptosis, and epigenetic regulation.Objectives: We investigated the concept of bidirectional interactions between mitochondria and cellular pathways in response to environmental stress with a focus on epigenetic regulation, and we examined DNA repair and DDR pathways as examples of biological processes that respond to exogenous insults through changes in homeostasis and altered mitochondrial function.Methods: The National Institute of Environmental Health Sciences sponsored the Workshop on Mitochondria, Energetics, Epigenetics, Environment, and DNA Damage Response on 25–26 March 2013. Here, we summarize key points and ideas emerging from this meeting.Discussion: A more comprehensive understanding of signaling mechanisms (cross-talk) between the mitochondria and nucleus is central to elucidating the integration of mitochondrial functions with other cellular response pathways in modulating the effects of environmental agents. Recent studies have highlighted the importance of mitochondrial functions in epigenetic regulation and DDR with environmental stress. Development and application of novel technologies, enhanced experimental models, and a systems-type research approach will help to discern how environmentally induced mitochondrial dysfunction affects key mechanistic pathways.Conclusions: Understanding mitochondria–cell signaling will provide insight into individual responses to environmental hazards, improving prediction of hazard and susceptibility to environmental stressors.Citation: Shaughnessy DT, McAllister K, Worth L, Haugen AC, Meyer JN, Domann FE, Van Houten B, Mostoslavsky R, Bultman SJ, Baccarelli AA, Begley TJ, Sobol RW, Hirschey MD, Ideker T, Santos JH, Copeland WC, Tice RR, Balshaw DM, Tyson FL. 2014. Mitochondria, energetics, epigenetics, and cellular responses to stress. Environ Health Perspect 122:1271–1278; http://dx.doi.org/10.1289/ehp.1408418
Background:The term “exposome” was coined in 2005 to underscore the importance of the environment to human health and to bring research efforts in line with those on the human genome. The ability to characterize environmental exposures through biomonitoring is key to exposome research efforts.Objectives:Our objectives were to describe why traditional and nontraditional (exposomic) biomonitoring are both critical in studies aiming to capture the exposome and to make recommendations on how to transition exposure research toward exposomic approaches. We describe the biomonitoring needs of exposome research and approaches and recommendations that will help fill the gaps in the current science.Discussion:Traditional and exposomic biomonitoring approaches have key advantages and disadvantages for assessing exposure. Exposomic approaches differ from traditional biomonitoring methods in that they can include all exposures of potential health significance, whether from endogenous or exogenous sources. Issues of sample availability and quality, identification of unknown analytes, capture of nonpersistent chemicals, integration of methods, and statistical assessment of increasingly complex data sets remain challenges that must continue to be addressed.Conclusions:To understand the complexity of exposures faced throughout the lifespan, both traditional and nontraditional biomonitoring methods should be used. Through hybrid approaches and the integration of emerging techniques, biomonitoring strategies can be maximized in research to define the exposome.Citation:Dennis KK, Marder E, Balshaw DM, Cui Y, Lynes MA, Patti GJ, Rappaport SM, Shaughnessy DT, Vrijheid M, Barr DB. 2017. Biomonitoring in the era of the exposome. Environ Health Perspect 125:502–510; http://dx.doi.org/10.1289/EHP474
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.