Nine days of hindlimb suspension resulted in atrophy (55%) and loss of protein (53%) in rat soleus muscle due to a marked elevation in protein breakdown (66%, P < 0.005). To define which proteolytic system(s) contributed to this increase, soleus muscles from unweighted rats were incubated in the presence of proteolytic inhibitors. An increase in lysosomal and Ca 2+-activated proteolysis (254%, P < 0.05) occurred in the atrophying incubated muscles. In agreement with the measurements in vitro, cathepsin B, cathepsins B + L and m-calpain enzyme activities increased by 111%, 92% and 180% (P < 0.005) respectively in the atrophying muscles. Enhanced mRNA levels for these proteinases (P < 0.05 to P < 0.001) paralleled the increased enzyme activities, suggesting a transcriptional regulation of these enzymes. However, the lysosomal and Ca 2+-dependent proteolytic pathways accounted for a minor part of total proteolysis in both control (9%) and unweighted rats (18%). Furthermore the inhibition of these pathways failed to suppress increased protein breakdown in unweighted muscle. Thus a non-lysosomal Ca 2+-independent proteolytic process essentially accounted for the increased proteolysis and subsequent muscle wasting. Increased mRNA levels for ubiquitin, the 14 kDa ubiquitin-conjugating enzyme E2 (involved in the ubiquitylation of protein substrates) and the C2 and C9 subunits of the 20 S proteasome (i.e. the proteolytic core of the 26 S proteasome that degrades ubiquitin conjugates) were observed in the atrophying muscles (P < 0.02 to P < 0.001). Analysis of C9 mRNA in polyribosomes showed equal distribution into both translationally active and inactive mRNA pools, in either unweighted or control rats. These results suggest that increased ATP-ubiquitin-dependent proteolysis is most probably responsible for muscle wasting in the unweighted soleus muscle.
We studied the alterations in skeletal muscle protein breakdown in long lasting sepsis using a rat model that reproduces a sustained and reversible catabolic state, as observed in humans. Rats were injected intravenously with live Escherichia coli ; control rats were pair-fed to the intake of infected rats. Rats were studied in an acute septic phase (day 2 postinfection), in a chronic septic phase (day 6), and in a late septic phase (day 10). The importance of the lysosomal, Ca 2 ϩ -dependent, and ubiquitin-proteasome proteolytic processes was investigated using proteolytic inhibitors in incubated epitrochlearis muscles and by measuring mRNA levels for critical components of these pathways. Protein breakdown was elevated during the acute and chronic septic phases (when significant muscle wasting occurred) and returned to control values in the late septic phase (when wasting was stopped). A nonlysosomal and Ca 2 ϩ -independent process accounted for the enhanced proteolysis, and only mRNA levels for ubiquitin and subunits of the 20 S proteasome, the proteolytic core of the 26 S proteasome that degrades ubiquitin conjugates, paralleled the increased and decreased rates of proteolysis throughout. However, increased mRNA levels for the 14-kD ubiquitin conjugating enzyme E2, involved in substrate ubiquitylation, and for cathepsin B and m-calpain were observed in chronic sepsis. These data clearly support a major role for the ubiquitinproteasome dependent proteolytic process during sepsis but also suggest that the activation of lysosomal and Ca 2 ϩ -dependent proteolysis may be important in the chronic phase. (
Immobilization produces morphological, physiological, and biochemical alterations in skeletal muscle leading to muscle atrophy and long periods of recovery. Muscle atrophy during disuse results from an imbalance between protein synthesis and proteolysis but also between apoptosis and regeneration processes. This work aimed to characterize the mechanisms underlying muscle atrophy and recovery following immobilization by studying the regulation of the mitochondria-associated apoptotic and the ubiquitin-proteasome-dependent proteolytic pathways. Animals were subjected to hindlimb immobilization for 4-8 days (I4 to I8) and allowed to recover after cast removal for 10-40 days (R10 to R40). Soleus and gastrocnemius muscles atrophied from I4 to I8 to a greater extent than extensor digitorum longus and tibialis anterior muscles. Gastrocnemius muscle atrophy was first stabilized at R10 before being progressively reduced until R40. Polyubiquitinated proteins accumulated from I4, whereas the increased ubiquitination rates and chymotrypsin-like activity of the proteasome were detectable from I6 to I8. Apoptosome and caspase-3 or -9 activities increased at I6 and I8, respectively. The ubiquitin-proteasome-dependent pathway was normalized early when muscle stops to atrophy (R10). By contrast, the mitochondria-associated apoptotic pathway was first downregulated below basal levels when muscle started to recover at R15 and completely normalized at R20. Myf 5 protein levels decreased from I4 to I8 and were normalized at R10. Altogether, our results suggest a two-stage process in which the ubiquitin-proteasome pathway is rapidly up- and downregulated when muscle atrophies and recovers, respectively, whereas apoptotic processes may be involved in the late stages of atrophy and recovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.