The rising incidence and increasing mortality of hepatocellular carcinoma (HCC), combined with its high tumor heterogeneity, lack of druggable targets, and tendency to develop resistance to chemotherapeutics, make the development of better models for this cancer an urgent challenge. To better mimic the high diversity within the HCC genetic landscape, versatile somatic murine models have recently been developed using the hydrodynamic tail vein injection (HDTVi) system. These represent novel in vivo tools to interrogate HCC phenotype and response to therapy, and importantly, allow further analyses of the associated tumor microenvironment (TME) shaped by distinct genetic backgrounds. Here, we describe several optimized protocols to generate, collect, and experimentally utilize various samples obtained from HCC somatic mouse models generated by HDTVi. More specifically, we focus on techniques relevant to ex vivo analyses of the complex liver TME using multiparameter flow cytometric analyses of over 21 markers, immunohistochemistry, immunofluorescence, and histochemistry. We describe the transcriptional assessment of whole tissue, or of isolated immune subsets by flow‐cytometry‐based cell sorting, and other protein‐oriented analyses. Together, these streamlined protocols allow the optimal use of each HCC murine model of interest and will assist researchers in deciphering the relations between cancer cell genetics and systemic and local changes in immune cell landscapes in the context of HCC progression. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Generation of HCC mouse models by hydrodynamic tail vein injection Basic Protocol 2: Assessment of HCC tumor progression by magnetic resonance imaging Basic Protocol 3: Mouse sacrifice and sample collection in HCC mouse models Support Protocol 1: Preparation of serum or plasma from blood Basic Protocol 4: Single‐cell preparation and HCC immune landscape phenotyping by flow cytometry Alternate Protocol 1: Flow cytometric analysis of circulating immune cells Support Protocol 2: Generation, maintenance, and characterization of HCC cell lines Support Protocol 3: Fluorescence‐activated cell sorting of liver single‐cell preparation Basic Protocol 5: Preparation and immunohistochemical analysis of tumor tissues from HCC‐bearing liver Alternate Protocol 2: Preparation and analyses for immunofluorescence staining of HCC‐bearing liver Support Protocol 4: Liver‐specific phenotypic analyses of liver sections Support Protocol 5: Immunohistochemical quantification in liver sections Basic Protocol 6: Preparation of snap‐frozen tumor tissue from extracted liver and transcriptional analyses of bulk tumor or sorted cells Alternate Protocol 3: Protein analyses from HCC samples and serum or plasma
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.