SUMMARY Repetitive genomic regions include tandem sequence repeats and interspersed repeats, such as endogenous retroviruses and LINE-1 elements. Repressive heterochromatin domains silence expression of these sequences through mechanisms that remain poorly understood. Here, we present evidence that the retinoblastoma protein (pRB) utilizes a cell-cycle-independent interaction with E2F1 to recruit enhancer of zeste homolog 2 (EZH2) to diverse repeat sequences. These include simple repeats, satellites, LINEs, and endogenous retroviruses as well as transposon fragments. We generated a mutant mouse strain carrying an F832A mutation in Rb1 that is defective for recruitment to repetitive sequences. Loss of pRB-EZH2 complexes from repeats disperses H3K27me3 from these genomic locations and permits repeat expression. Consistent with maintenance of H3K27me3 at the Hox clusters, these mice are developmentally normal. However, susceptibility to lymphoma suggests that pRB-EZH2 recruitment to repetitive elements may be cancer relevant.
fThe retinoblastoma protein (pRB) is best known for regulating cell proliferation through E2F transcription factors. In this report, we investigate the properties of a targeted mutation that disrupts pRB interactions with the transactivation domain of E2Fs. Mice that carry this mutation endogenously (Rb1 ⌬G ) are defective for pRB-dependent repression of E2F target genes. Except for an accelerated entry into S phase in response to serum stimulation, cell cycle regulation in Rb1 ⌬G/⌬G mouse embryonic fibroblasts (MEFs) strongly resembles that of the wild type. In a serum deprivation-induced cell cycle exit, Rb1⌬G/⌬G MEFs display a magnitude of E2F target gene derepression similar to that of Rb1 ؊/؊ cells, even though Rb1 ⌬G/⌬G cells exit the cell cycle normally. Interestingly, cell cycle arrest in Rb1 ⌬G/⌬G MEFs is responsive to p16 expression and gamma irradiation, indicating that alternate mechanisms can be activated in G 1 to arrest proliferation. Some Rb1 ⌬G/⌬G mice die neonatally with a muscle degeneration phenotype, while the others live a normal life span with no evidence of spontaneous tumor formation. Most tissues appear histologically normal while being accompanied by derepression of pRB-regulated E2F targets. This suggests that non-E2F-, pRB-dependent pathways may have a more relevant role in proliferative control than previously identified.T he retinoblastoma tumor suppressor protein (pRB) has a central role in the regulation of the G 1 -to-S-phase transition. Inactivation of its control over cell cycle progression is one of the most common events in cancer (1). The RB protein is thought to regulate entry into S phase through its ability to repress E2F-dependent transcription (2). In the G 1 phase of the cell cycle, a direct interaction between the large pocket domain of pRB (RBLP) and the transactivation domain of E2Fs blocks transcription and recruits chromatin regulators that maintain the cell in G 1 (3). Activation of cyclin-dependent kinases (CDKs) results in the phosphorylation of pRB and the release of E2F transcription factors (4). Free E2Fs then activate a transcriptional program that drives the cell into S phase (3). This model of pRB regulation of E2F dominates our understanding of G 1 -to-S-phase control. Much of our knowledge of this model was derived from studies using viral oncoproteins encoded by small DNA tumor viruses (5, 6). Of particular note, the human papillomavirus E7 protein has been shown to compete for pRB-E2F interactions to deregulate proliferation (7, 8). However, E7 must also target pRB for degradation in order to induce proliferation (8). Thus, the experimental system that gave rise to the pRB-E2F regulatory axis in cell cycle control also suggests that pRB may engage other growth-suppressing activities beyond E2F regulation. By comparison with the pRB-E2F pathway, we know very little about pRB's non-E2F-dependent growth control mechanisms and their relative contribution to cell cycle regulation and tumor suppressor activities.The minimal growth-suppressive region of pRB...
i Mammalian DREAM is a conserved protein complex that functions in cellular quiescence. DREAM contains an E2F, a retinoblastoma (RB)-family protein, and the MuvB core (LIN9, LIN37, LIN52, LIN54, and RBBP4). In mammals, MuvB can alternatively bind to BMYB to form a complex that promotes mitotic gene expression. Because BMYB-MuvB is essential for proliferation, loss-of-function approaches to study MuvB have generated limited insight into DREAM function. Here, we report a gene-targeted mouse model that is uniquely deficient for DREAM complex assembly. We have targeted p107 (Rbl1) to prevent MuvB binding and combined it with deficiency for p130 (Rbl2). Our data demonstrate that cells from these mice preferentially assemble BMYB-MuvB complexes and fail to repress transcription. DREAM-deficient mice show defects in endochondral bone formation and die shortly after birth. Micro-computed tomography and histology demonstrate that in the absence of DREAM, chondrocytes fail to arrest proliferation. Since DREAM requires DYRK1A (dual-specificity tyrosine phosphorylation-regulated protein kinase 1A) phosphorylation of LIN52 for assembly, we utilized an embryonic bone culture system and pharmacologic inhibition of (DYRK) kinase to demonstrate a similar defect in endochondral bone growth. This reveals that assembly of mammalian DREAM is required to induce cell cycle exit in chondrocytes.C ellular differentiation is generally controlled by transcriptional activation or repression of specific genes. Consequently, a host of different molecular genetic events can shape the properties of cells during development. Recent evidence indicates that an evolutionarily conserved protein complex known as DREAM is capable of regulating diverse gene expression programs, thereby unifying many disparate events in development into a single molecular machine (1, 2).The DREAM complex was isolated, and its composition was determined from a number of different model organisms. Studies of aberrant growth factor signaling in Caenorhabditis elegans lead to the discovery of complementation groups that contribute to a multivulval (Muv) phenotype (3). Mutation of any two of the synthetic multivulval (synMuv) group A, B, or C genes resulted in worms with elevated numbers of vulvae (4). Group B contains a number of genes (the Lin-9, Lin-37, Lin-52, Lin-53/RBBP4, and Lin-54 genes) whose encoded proteins form the MuvB core complex (5-7). In addition, worm homologues of retinoblastoma protein (RB), E2F, and DP are also group B members (8, 9). The MuvB core was also found to interact with MYB in transcriptional control of cell cycle progression in fruit flies (6, 7). Isolation of MYB and RB revealed that they copurify with MuvB proteins, and this has formed the basis of the DREAM complex (Drosophila RB, E2F, and MuvB). In some organisms it also contains epigenetic readers and writers such as histone deacetylases (HDACs) and L3MBT (6,7,10). The model that has emerged is one in which the DREAM complex can confer both positive and negative regulation of transcripti...
SummaryThe scpAB and sspABC operons of Staphylococcus aureus encode Staphopain cysteine proteases ScpA and SspB, and their respective Staphostatins ScpB and SspC, which are thought to protect against premature activation of Staphopain precursors during protein export. However, we found that the proSspB precursor was secreted and activated without detriment to S. aureus in the absence of SspC function. Our data indicate that this is feasible due to a restricted substrate specificity of mature SspB, a stable precursor structure and slow secretion kinetics. In contrast, mature ScpA had a broad substrate specificity, such that it was prone to autolytic degradation, but also was uniquely able to degrade elastin fibres. Modelling of proScpA relative to the proSspB structure identified several differences, which appear to optimize proScpA for autocatalytic activation, whereas proSspB is optimized for stability, and cannot initiate autocatalytic activation. Consequently, recombinant proSspB remained stable and unprocessed when retained in the cytoplasm of Escherichia coli, whereas proScpA initiated rapid autocatalytic activation, leading to capture of an activation intermediate by ScpB. We conclude that the status of sspBC in S. aureus, as paralogues of the ancestral scpAB genes, facilitated a different activation mechanism, a stable proSspB isoform and modified Staphostatin function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.