Dual-armed cluster tools for semiconductor manufacturing typically have had two arms fixed in opposite directions. Recently, new cluster tool robot systems with two independent robot arms have been introduced with the expectation that the arms' flexibility will improve the throughput. However, the productivity gain has yet to be examined. Accordingly, we examine under which circumstances and the extent to which productivity gains can be achieved and how the robot task sequences should be scheduled to maximize the throughput. For this purpose, we develop a Petri net model that represents the tool behavior. We show that the wellknown swap sequence, which is known to be optimal for conventional dual-armed tools, is not always optimal. Instead, we identify two other sequences that are optimal under certain conditions. We define the workloads for each process step and the transport module to derive conditions for optimality of the sequences, based on the Petri net model and the workload. We also develop a mixed integer programming (MIP) model to determine optimal sequences among one-cyclic schedules for the cases in which the proposed sequences are not optimal. Furthermore, we analyze and demonstrate how the two independent arms can increase the throughput in comparison to a conventional dual-armed robot.Note to Practitioners-New robot technology enables reliable operation of two independent arms in cluster tools. Its operational flexibility has significant potential for tool productivity gain. Our results identify when the two independent arms are better and how their flexibility can be fully utilized. Optimal scheduling methods for the two independent arms are also given. Based on our results, tool vendors, engineers, and fabs should consider adoption of the new tool architecture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.