The Fibroblast Growth Factor 21 (FGF21) is considered an attractive therapeutic target for obesity and obesity-related disorders due to its beneficial effects in lipid and carbohydrate metabolism. FGF21 response is essential under stressful conditions and its metabolic effects depend on the inducer factor or stress condition. FGF21 seems to be the key signal which communicates and coordinates the metabolic response to reverse different nutritional stresses and restores the metabolic homeostasis. This review is focused on describing individually the FGF21-dependent metabolic response activated by some of the most common nutritional challenges, the signal pathways triggering this response, and the impact of this response on global homeostasis. We consider that this is essential knowledge to identify the potential role of FGF21 in the onset and progression of some of the most prevalent metabolic pathologies and to understand the potential of FGF21 as a target for these diseases. After this review, we conclude that more research is needed to understand the mechanisms underlying the role of FGF21 in macronutrient preference and food intake behavior, but also in β-klotho regulation and the activity of the fibroblast activation protein (FAP) to uncover its therapeutic potential as a way to increase the FGF21 signaling.
Epidermal growth factor receptor (EGFR) tyrosine kinases inhibitors (TKIs) are effective therapies for non-small cell lung cancer (NSCLC) patients whose tumors harbor an EGFR activating mutation. However, this treatment is not curative due to primary and secondary resistance such as T790M mutation in exon 20. Recently, activation of transducer and activator of transcription 3 (STAT3) in NSCLC appeared as an alternative resistance mechanism allowing cancer cells to elude the EGFR signaling. Overexpression of fatty acid synthase (FASN), a multifunctional enzyme essential for endogenous lipogenesis, has been related to resistance and the regulation of the EGFR/Jak2/STAT signaling pathways. Using EGFR mutated (EGFRm) NSCLC sensitive and EGFR TKIs’ resistant models (Gefitinib Resistant, GR) we studied the role of the natural polyphenolic anti-FASN compound (−)-epigallocatechin-3-gallate (EGCG), and its derivative G28 to overcome EGFR TKIs’ resistance. We show that G28’s cytotoxicity is independent of TKIs’ resistance mechanisms displaying synergistic effects in combination with gefitinib and osimertinib in the resistant T790M negative (T790M−) model and showing a reduction of activated EGFR and STAT3 in T790M positive (T790M+) models. Our results provide the bases for further investigation of G28 in combination with TKIs to overcome the EGFR TKI resistance in NSCLC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.