This paper aims to contribute to acoustical comfort in buildings by presenting a study about the polymer waste micronized poly (ethylene vinyl acetate) (EVA) to be used in mortars for impact sound insulation in subfloor systems. The evaluation method included physical, mechanical and morphological properties of the mortar developed with three distinct thicknesses designs (3, 5, and 7 cm) with replacement percentage of the natural aggregate by 10%, 25%, and 50% EVA. Microscopy analysis showed the surface deposition of cement on EVA, with preservation of polymer porosity. The compressive creep test estimated long-term deformation, where the 10% EVA sample with a 7 cm thick mortar showed the lowest percentage deformation of its height. The impact noise test was performed with 50% EVA samples, reaching an impact sound insulation of 23 dB when the uncovered slab was compared with the 7 cm thick subfloor mortar. Polymer waste addition decreased the mortar compressive strength, and EVA displayed characteristics of an influential material to intensify other features of the composite.
Reinforced concrete structures are prone to cracking. The development of cementitious matrices with the capacity for self-healing soon after these cracks appear represents savings with inspections and repairs of the structures. Self-healing can be stimulated with the use of crystalline admixtures. Such materials easily react with water and increase the density of C-S-H (hydrated-calcium-silicate), forming insoluble deposits blocking existing pores and cracks. In this research, self-healing in concrete cracks was evaluated using three different crystalline admixtures, submitted to two and six wetting–drying cycles. The efficiency of self-healing was evaluated by optical microscopy and using the chloride diffusion test, which allowed calculating the predicted useful life of the concretes. The results highlight two important findings: (i) in optical microscopy, crystalline admixtures were not efficient in promoting self-healing on the surface of cracks in any of the studied concretes; (ii) the passage of chlorides by diffusion was lower for concretes with crystalline admixtures compared to the reference, showing better internal healing of these materials and, consequently, greater prediction of the concrete’s useful life.
The intent of this research is to investigate how the customers of a technological control laboratory for civil construction materials perceived the quality of the services delivered by the lab, specifically in regard to the service of concrete compression testing. The popular SERVQUAL scale, a multidimensional instrument used to capture customer expectations and perceptions, was used as a model for the application of a survey. Exploratory factor analyses were employed to evaluate customers’ perceptions and experiences of service quality in regard to the dimensions and accompanying attributes of the SERVQUAL scale. Twenty attributes, which were grouped within five dimensions (Reliability, Assurance, Tangibles, Responsiveness, and Empathy), were identified, explaining 80.417% of the variance between customer expectations and perceptions and characterizing these dimensions on a modified SERVQUAL scale. Analysis of the results allowed us to identify discrepancies in perceived service quality compared with customers’ expectations. Most of the identified gaps between expectations and perceptions resulted in negative values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.