Although wide bore computed tomography (CT) scanners provide increased space for patients, the scan field of view (sFOV) remains considerably smaller than the bore size. Consequently, patient anatomy which spans beyond the sFOV is truncated and the information is lost. As a solution, some manufacturers provide the capacity to reconstruct CT images from a partial dataset at an extended field of view (eFOV). To assess spatial distortion within this eFOV three phantoms were considered a 30 x 30 x 20 cm 3 slab of solid water, the Gammex electron density CT phantom and a female anthropomorphic phantom. For each phantom, scans were taken centrally within the sFOV as a reference image and with the phantom edge extended at 1 cm intervals from 0 to 5 cm beyond the sFOV into the eFOV. To assess CT number accuracy various tissue equivalent materials were scanned in the eFOV and resulting CT numbers were compared to inserts scanned within the sFOV. For all phantom geometries, objects within the eFOV were geometrically overestimated with elongation of phantom shapes into the eFOV. The percentage increase in size ranged from 0.22 to 15.94 % over all phantoms considered. The difference between eFOV and sFOV CT numbers was dependent upon insert density. The eFOV underestimated CT numbers in the range of −127 to −230 HU for soft tissue densities and −278 to −640 for bone densities. This trend reversed for low tissue densities with the CT numbers in the eFOV being overestimated by 100-130 HU for lung equivalent inserts. Initial correlation between eFOV and sFOV CT numbers was seen and a correction function was successfully applied to better estimate the CT number representative of that seen within the sFOV. Abstract Although wide bore computed tomography (CT) scanners provide increased space for patients, the scan field of view (sFOV) remains considerably smaller than the bore size. Consequently, patient anatomy which spans beyond the sFOV is truncated and the information is lost. As a solution, some manufacturers provide the capacity to reconstruct CT images from a partial dataset at an extended field of view (eFOV). To assess spatial distortion within this eFOV three phantoms were considered a 30 9 30 9 20 cm 3 slab of solid water, the Gammex electron density CT phantom and a female anthropomorphic phantom. For each phantom, scans were taken centrally within the sFOV as a reference image and with the phantom edge extended at 1 cm intervals from 0 to 5 cm beyond the sFOV into the eFOV. To assess CT number accuracy various tissue equivalent materials were scanned in the eFOV and resulting CT numbers were compared to inserts scanned within the sFOV. For all phantom geometries, objects within the eFOV were geometrically overestimated with elongation of phantom shapes into the eFOV. The percentage increase in size ranged from 0.22 to 15.94 % over all phantoms considered. The difference between eFOV and sFOV CT numbers was dependent upon insert density. The eFOV underestimated CT numbers in the range of -127 to -230 HU for so...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.