Lipoxins are a novel class of endogenous eicosanoid mediators that potently inhibit inflammatory events by signaling via specific receptors expressed on phagocytic cells. Animal models have shown that lipoxin A4 (LXA4) down-regulates inflammation in vivo. Here we demonstrate, for the first time, the expression of LXA4 receptors, and their up-regulation by IL-1β, in normal human synovial fibroblasts (SF). We examined whether exogenous LXA4 abrogated IL-1β stimulation of SF in vitro. IL-1β induced the synthesis of IL-6, IL-8, and matrix metalloproteinases (MMP)-1 and -3. At nanomolar concentrations, LXA4 inhibited these IL-1β responses with reduction of IL-6 and IL-8 synthesis, by 45 ± 7% and 75 ± 11%, respectively, and prevented IL-1β-induced MMP-3 synthesis without significantly affecting MMP-1 levels. Furthermore, LXA4 induced a 2-fold increase of tissue inhibitor of metalloproteinase (TIMP)-1 and a ∼3-fold increase of TIMP-2 protein levels. LXA4 inhibitory responses were dose dependent and were abrogated by pretreatment with LXA4 receptor antiserum. LXA4-induced changes of IL-6 and TIMP were accompanied by parallel changes in mRNA levels. These results indicate that LXA4 in activated SF inhibits the synthesis of inflammatory cytokines and MMP and stimulates TIMP production in vitro. These findings suggest that LXA4 may be involved in a negative feedback loop opposing inflammatory cytokine-induced activation of SF.
The squid nervous system includes various brain ganglia, optic lobes (the visual center), and the stellate ganglia, the system of giant motor fibers responsible for rapid jet-propelled escape behavior. The large caliber of giant fibers is due, in part, to the accumulation of squid-specific neurofilaments (NFs) made up of a heavily phosphorylated NF 220 protein together with NF 70 and NF 60 subunits. Using antibodies prepared against known peptide sequences in these proteins, together with a mammalian-derived antibody that specifically recognizes phosphorylated squid NF 220, we studied the localization of NFs in adult tissues and during neural development. Immunoblot and immunohistochemical analyses showed that NFs were present in adult neural tissues, primarily in selected fibers, with giant axons showing the most robust expression. After the first neurons differentiated at stage 22, immunoblots showed NF 60- and NF 70-immunoreactive proteins at all stages. The NF 220 subunit, however, was not detected in immunoblots at any developmental stage. Phosphorylated NF 220 immunoreactivity, although absent in immunoblots, was first seen in selected fibers of the stellate ganglia at stage 25, increasing thereafter in all giant fibers until hatching (stage 30). The stellate ganglion is the first neural tissue to acquire a mature neurofilament complement (i.e., phosphorylated NF 220), shortly before the onset of jet-propelled escape behavior. The temporal pattern of expression of the NFs during development resembled that seen in vertebrates; i.e., the smaller NFs appeared before the larger subunit in most neural tissues. In the squid, the expression pattern seems to depend upon the post-transcriptional regulation of a single gene rather than upon transcriptional regulation of three independent genes as in vertebrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.