Most clinical applications of human multipotent mesenchymal stromal cells (MSCs) for cell therapy, tissue engineering, regenerative medicine, and treatment of immune and inflammatory diseases require a phase of isolation and ex vivo expansion allowing a clinically meaningful cell number to be reached. Conditions used for cell isolation and expansion should meet strict quality and safety requirements. This is particularly true for the growth medium used for MSC isolation and expansion. Basal growth media used for MSC expansion are supplemented with multiple nutrients and growth factors. Fetal bovine serum (FBS) has long been the gold standard medium supplement for laboratory-scale MSC culture. However, FBS has a poorly characterized composition and poses risk factors, as it may be a source of xenogenic antigens and zoonotic infections. FBS has therefore become undesirable as a growth medium supplement for isolating and expanding MSCs for human therapy protocols. In recent years, human blood materials, and most particularly lysates and releasates of platelet concentrates have emerged as efficient medium supplements for isolating and expanding MSCs from various origins. This review analyzes the advantages and limits of using human platelet materials as medium supplements for MSC isolation and expansion. We present the modes of production of allogeneic and autologous platelet concentrates, measures taken to ensure optimal pathogen safety profiles, and methods of preparing PLs for MSC expansion. We also discuss the supply of such blood preparations. Produced under optimal conditions of standardization and safety, human platelet materials can become the future 'gold standard' supplement for ex vivo production of MSCs for translational medicine and cell therapy applications.
Recent studies have shown that adult tissues contain stem/ progenitor cells capable of not only generating mature cells of their tissue of origin but also transdifferentiating themselves into other tissue cells. Murine skin-derived precursor cells, for example, have been described as unique, nonmesenchymal-like stem cells capable of mesodermal and ectodermal neurogenic differentiation. Human-derived skin precursors are less well characterized.In this study, the isolation and characterization of adherent, mesenchymal stem cell-like cells from human scalp tissue (hSCPs) are described. hSCPs initially isolated by both medium-selection (ms-hSCPs) and single-cell (c-hSCPs) methods were cultured in medium containing epidermal growth factor and fibroblast growth factor-β. Cultured mshSCPs and c-hSCPs demonstrated a consistent growth rate, continuously replicated in cell culture, and displayed a stable phenotype indistinguishable from each other. Both hSCPs expressed surface antigen profile (CDw90, SH2, SH4, CD105, CD166, CD44, CD49d-e, and HLA class I) similar to that of bone marrow mesenchymal stem cells (BM-MSCs). The growth kinetics, surface epitopes, and differentiation potential of c-hSCP cells were characterized and compared with BM-MSCs. In addition to differentiation along the osteogenic, chondrogenic, and adipogenic lineages, hSCPs can effectively differentiate into neuronal precursors evident by neurogenic gene expression of glial fibrillary acid protein, NCAM, neuron filament-M, and microtubule-associated protein 2 transcripts. Therefore, hSCPs may potentially be a better alternative of BM-MSCs for neural repairing, in addition to their other mesenchymal regenerative capacity. Our study suggests that hSCPs may provide an alternative adult stem cell resource that may be useful for regenerative tissue repair and autotransplantations. Stem Cells 2005;23:1012-1020
The geometries of the Fe-O2 and Fe-CO bonds in myoglobin and haemoglobin differ significantly from those in free porphyrin model compounds. It has been suggested that steric hindrance by Val-E11 and His-E7 and a hydrogen bond between His-E7 and oxygen affect the geometry and electronic state of the Fe-ligand bond, and that these interactions may be important in controlling oxygen affinity. We have produced mutant haemoglobins in E. coli having Val(67 beta)E11 replaced by Ala, Met, Leu or Ile and His(58 beta)E7 by Gln, Val or Gly. We have studied the effect of these mutations on the equilibrium and kinetics of ligand binding. The conformation of the new side chains and their effect on the protein structure have been examined by X-ray crystallography, and the vibrational properties of the Fe-CO bond observed by resonance Raman spectroscopy. We found that the steric hindrance of ligand binding by the E11 residue and the polarity of the E7 residue in the beta subunit are critical for fine-tuning ligand affinity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.