With the expanding electrification in all sectors of transport, it is necessary to look for new efficient solutions for propulsion systems for use in air transport. One of the approaches can be the use of electric ducted fans (EDFs), especially in, but not limited to, the case of unmanned aerial vehicles with vertical takeoff and landing. This concept has been known for several decades but has been used very little and therefore has been almost unexplored. This opens up opportunities for investigating the performance characteristics, electrical consumption or efficient thrust vectoring of EDFs with respect to their design and operational use. The presented study therefore deals with the influence of the EDF design change on its performance characteristics. These design changes mainly concerned the geometry of the cowling, i.e., reduction and increase of outlet cross section, and arrangement of fans, i.e., one- and two-rotor specification. The comparison was based on measuring of vertical thrust and power consumption during static testing. The results showed that the increasing outlet is the most suitable construction for the generation of vertical thrust during static testing, considering the specifically used EDF construction arrangement. Based on the findings, it can also be concluded that EDFs are a suitable option for use in unmanned aircraft as a competition to other propulsion systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.