This paper describes the proposal of a numerical method and its extension, to compute Modular Inverse Matrices and so, Modular Linear Equations Systems (with one, infinite or no-solution set), with no theoretical limit, inZ_n; considering polynomial and logarithmic time computational complexity. The geometric interpretation of this, implies that elements, such as planes of these vector spaces, interact in the n-dimensional grid. The interaction and ‘movement’ inside the Grid, can only be possible in a discrete way; from one point to another, like digital states. On the other hand, this work also considers applied mathematics in fields such as cryptography. Based on research, it was observed that this method is an algorithm, because it is precise, defined and finite, so it can be programmed in any computer language. This work constitutes a new approach in numerical analysis for modular inverse matrix computation, plotted in 3-axis linearly. Uses and applications of this proposal are diverse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.