Global gene expression analysis using microarrays and, more recently, RNA-seq, has allowed investigators to understand biological processes at a system level. However, the identification of differentially expressed genes in experiments with small sample size, high dimensionality, and high variance remains challenging, limiting the usability of these tens of thousands of publicly available, and possibly many more unpublished, gene expression datasets. We propose a novel variable selection algorithm for ultra-low-n microarray studies using generalized linear model-based variable selection with a penalized binomial regression algorithm called penalized Euclidean distance (PED). Our method uses PED to build a classifier on the experimental data to rank genes by importance. In place of cross-validation, which is required by most similar methods but not reliable for experiments with small sample size, we use a simulation-based approach to additively build a list of differentially expressed genes from the rank-ordered list. Our simulation-based approach maintains a low false discovery rate while maximizing the number of differentially expressed genes identified, a feature critical for downstream pathway analysis. We apply our method to microarray data from an experiment perturbing the Notch signaling pathway in Xenopus laevis embryos. This dataset was chosen because it showed very little differential expression according to limma, a powerful and widely-used method for microarray analysis. Our method was able to detect a significant number of differentially expressed genes in this dataset and suggest future directions for investigation. Our method is easily adaptable for analysis of data from RNA-seq and other global expression experiments with low sample size and high dimensionality.
Abstract. This paper is motivated by a problem suggested in Müller [11] that concerns the weak lower semicontinuity of a smooth integral functional I(u) on a Sobolev space along all its weakly convergent minimizing sequences. Here we study a restricted weak lower semicontinuity of I(u) along all weakly convergent Palais-Smale sequences (that is, sequences {u k } satisfying I (u k ) → 0). In view of Ekeland's variational principle, this restricted weak lower semicontinuity, replacing the usual (unrestricted) weak lower semicontinuity in the direct method of calculus of variations, is sufficient for the existence of minimizers under the standard coercivity assumption. The main purpose of the paper is to study the relationships of this restricted weak lower semicontinuity condition with the usual weak lower semicontinuity condition that is known to be equivalent to the Morrey quasiconvexity in the calculus of variations. We show that the two conditions are not equivalent in general, but are equivalent in certain interesting cases.
In this article we study periodic solutions of a mathematical model for brain tumor virotherapy by finding Hopf bifurcations with respect to a biological significant parameter, the burst size of the oncolytic virus. The model is derived from a PDE free boundary problem. Our model is an ODE system with six variables, five of them represent different cell or virus populations, and one represents tumor radius. We prove the existence of Hopf bifurcations, and periodic solutions in a certain interval of the value of the burst size. The evolution of the tumor radius is much influenced by the value of the burst size. We also provide a numerical confirmation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.