Smoothed Particle Hydrodynamics (SPH) is a mesh-free Lagrangian numerical method suited to modelling fluids with a freely deforming surface. A two-dimensional SPH algorithm has been developed and applied to the problem of ship keel and bow-flare slamming. Freely decelerating drop tests of a model flared hull section were used as a basis for an initial validation of the SPH model. Relative vertical velocity profiles measured during tow tank experiments were then imposed on two-dimensional SPH models and reasonable agreement between the experimental and numerical slamming pressures was found. Finally, relative vertical velocity profiles calculated using SEAWAY software were implemented in the SPH algorithm, so as to simulate slamming on a typical V-form hull model.
Current methods for assessing slamming of ships in head seas are generally based on constant-velocity wedge impact results for each hull section. A 2D Smoothed Particle Hydrodynamics (SPH) method is described for calculating slamming loads on realistic hull section shapes and impact velocity profiles. SPH is a particle-based method that is mesh-free and is therefore able to accurately simulate large free surface deformations such as jets and splashes, which are an important factor in slamming events.It is shown that large slamming pressures are predicted on wedge shaped hull sections and the concave part of flared monohull sections. Similarly, cross-deck slamming of catamaran hulls can produce large slamming pressures at the top of the arches. The nature of relative vertical velocity profiles during slam events is also discussed. Hull sections with varying velocity profiles are modelled using SPH to show the effect on slamming pressures as compared to the commonly used constant velocity profile.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.