Radiation effects can induce, amongst other phenomena, logic errors in digital circuits and systems. These logic errors corrupt the states of the internal memory elements of the circuits and can propagate to the primary outputs, affecting other onboard systems. In order to avoid this, Triple Modular Redundancy is typically used when full robustness against these phenomena is needed. When full triplication of the complete design is not required, selective hardening can be applied to the elements in which a radiation-induced upset is more likely to propagate to the main outputs of the circuit. The present paper describes a new approach for selectively hardening digital electronic circuits by design, which can be applied to digital designs described in the VHDL Hardware Description Language. When the designer changes the datatype of a signal or port to a hardened type, the necessary redundancy is automatically inserted. The automatically hardening features have been compiled into a VHDL package, and have been validated both in simulation and by means of fault injection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.