The use of multipotent mesenchymal stromal cells (MSCs) as candidate medicines for treating a variety of pathologies is based on their qualities as either progenitors for the regeneration of damaged tissue or producers of a number of molecules with pharmacological properties. Preclinical product development programmes include the use of well characterized cell populations for proof of efficacy and safety studies before testing in humans. In the field of orthopaedics, an increasing number of translational studies use sheep as an in vivo test system because of the similarities with humans in size and musculoskeletal architecture. However, robust and reproducible methods for the isolation, expansion, manipulation and characterization of ovine MSCs have not yet been standardised. The present study describes a method for isolation and expansion of fibroblastic-like, adherent ovine MSCs that express CD44, CD90, CD140a, CD105 and CD166, and display trilineage differentiation potential. The 3-week bioprocess proposed here typically yielded cell densities of 1.4 × 10 MSCs/cm at passage 2, with an expansion factor of 37.8 and approximately eight cumulative population doublings. The osteogenic potential of MSCs derived following this methodology was further evaluated in vivo in a translational model of osteonecrosis of the femoral head, in which the persistence of grafted cells in the host tissue and their lineage commitment into osteoblasts and osteocytes was demonstrated by tracking enhanced green fluorescent protein-labelled cells. Copyright © 2016 John Wiley & Sons, Ltd.
In the field of orthopedics, translational research of novel therapeutic approaches involves the use of large animal models (such as sheep, goat, pig, dog, and horse) due to the similarities with humans in weight, size, joint structure, and bone/cartilage healing mechanisms. Particularly in the development of cell-based therapies, the lack of manageable immunocompromised preclinical large animal models prevents the use of human cells, which makes it necessary to produce equivalent homologous cell types for the study of their pharmacodynamics, pharmacokinetics, and toxicology. The methods described herein allow for the isolation, expansion, manipulation, and characterization of fibroblastic-like ovine bone marrow-derived multipotent mesenchymal stromal cells (BM-MSC) that, similar to human BM-MSC, adhere to standard plastic surfaces; express specific surface markers such as CD44, CD90, CD140a, CD105, and CD166; and display trilineage differentiation potential in vitro. Homogeneous cell cultures result from a 3-week bioprocess yielding cell densities in the range of 2-4 × 10 MSC/cm at passage 2, which corresponds to ∼8 cumulative population doublings. Large quantities of BM-MSC resulting from following this methodology can be readily used in proof of efficacy and safety studies in the preclinical development stage. © 2018 by John Wiley & Sons, Inc.
Este libro versa sobre un grupo de ensayos de corte humanista realizados por un grupo selecto de profesionales de diferentes países, Cuba, México, Ecuador, Argentina y los Estados Unidos. Todos, de manera unánime, coincidieron en escribir sobre el papel de la humanística en la enseñanza de las ciencias, en su sentido más general, en la importancia que la misma tiene en la formación de conductas, valores y actitudes en los estudiantes y todas aquellas personas que, como seres humanos, necesitan de ese humanismo tan necesario en nuestros días. La Humanística que usted podrá leer en este material es parte del Pensamiento Profesoral Pedagógico (3P) desarrollado por docentes que han estado en el aula durante un período de tiempo estimable como para que sus aportes, tomando en consideración sus experiencias, sean reconocidos esenciales en el trabajo que día a día se desarrolla en las instituciones educativas en todos sus niveles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.