This paper presents an improved procedure for calculating dynamic pseudo junctions that may be used in two-dimensional, areal reservoir simulations to approximate three-dimensional reservoir behavior. Comparison of one-dimensional areal and two-dimensional vertical cross-sectional results for two example problems shows that the new pseudos accurately transfer problems shows that the new pseudos accurately transfer the effects of vertical variations in reservoir properties, fluid pressures, and saturations from the properties, fluid pressures, and saturations from the cross-sectional model to the areal model. The procedure for calculating dynamic pseudo-relative permeability accounts for differences in computing block lengths between the areal and cross-sectional models. Dynamic pseudo-capillary pressure transfers the effects of pseudo-capillary pressure transfers the effects of different pressure gradients in different layers of the cross-sectional model to the areal model. Introduction Jacks et al. have published procedures for calculating dynamic pseudo-relative permeabilities fro m vertical cross-section model runs. Their procedures for calculating pseudo functions are procedures for calculating pseudo functions are more widely applicable than other published approaches. They demonstrated that, in some cases, the derived pseudo functions could be used to simulate three-dimensional reservoir behavior using two-dimensional areal simulators. For our purposes, an areal simulator is characterized by purposes, an areal simulator is characterized by having only one computing block in the vertical dimension. The objectives of this paper are to present an improved procedure for calculating dynamic pseudo functions, including a dynamic pseudo-capillary pressure, and to demonstrate that the new procedure pressure, and to demonstrate that the new procedure generally is more applicable than any of the previously published approaches. The new pseudos previously published approaches. The new pseudos are similar to those derived by jacks et al. in that they are calculated from two-dimensional, vertical cross-section runs. They differ because (1) they account for differences in computing block lengths between the cross-sectional and areal models, and (2) they transfer the effects of different flow potentials in different layers of the cross-sectional potentials in different layers of the cross-sectional model to the areal model. Differences between cross-sectional and areal model block lengths are sometimes desirable to reduce data handling and computing costs for two-dimensional, areal model runs. For very large reservoirs, even when vertical calculations are eliminated by using pseudo functions, as many as 50,000 computing blocks might be required in the two-dimensional areal model to minimize important errors caused by numerical dispersion. The new pseudos, of course, cannot control numerical pseudos, of course, cannot control numerical dispersion in the cross-sectional runs. This is done by using a sufficiently large number of computing blocks along die length of the cross-section. The new pseudos then insure that no additional dispersion will occur in the areal model, regardless of the areal computing block lengths. Using this approach, the number of computing blocks in the two-dimensional areal model is reduced by a factor equal to the square of the ratio of the block lengths for the cross-sectional and areal models. The new pseudos do not prevent some loss in areal flow-pattern definition when the number of computing blocks in the two-dimensional areal model is reduced. A study of this problem and associated errors is beyond the scope of this paper. Our experience suggests that, for very large reservoirs with flank water injection, 1,000 or 2,000 blocks provide satisfactory definition. Many more blocks provide satisfactory definition. Many more blocks might be required for large reservoirs with much more intricate areal flow patterns. The next section presents comparative results for cross-sectional and one-dimensional areal models. These results demonstrate the reliability of the new pseudo functions and illustrate their advantages pseudo functions and illustrate their advantages over previously derived pseudos for certain situations. The relationship between two-dimensional, vertical cross-sectional and one-dimensional areal reservoir simulators has been published previously and will not be repeated here in any detail. Ideally, the pseudo functions should reproduce two-dimensional, vertical cross-sectional results when they are used in the corresponding one-dimensional areal model. SPEJ P. 269
When the pressure in a gas-condensate reservoir falls below the dewpoint, liquid condensate can accumulate in the pore space of the rock. This can reduce well deliverability and potentially affect the compositions of the produced fluids. Forecasting these effects requires relative permeability data for gas-condensate flow in the rock in the presence of immobile water saturation. In this study, relative permeability measurements were conducted on reservoir rock at a variety of conditions. The goal was to determine the sensitivity to interfacial tension (IFT) (which varies with pressure) and fluid type (reservoir fluids, pure hydrocarbons, and water). The results show a significant sensitivity to fluid type, as well as an IFT sensitivity that is similar to that reported by other researchers. For obtaining relative permeability data that are applicable to a specific reservoir, we conclude that laboratory measurements must be conducted at reservoir conditions with actual reservoir fluids.The measurements reported here used a state-of-the-art relative permeability apparatus of in-house design. The apparatus uses elevated temperature and pressure, precision pumps, and a sight glass with automated interface tracking. Closed-loop recirculation avoids the need for large quantities of reservoir fluids and ensures that the gas and liquid are in compositional equilibrium.
When the pressure in a gas condensate reservoir falls below the dew point, liquid condensate can accumulate in the pore space of the rock. This can reduce well deliverability and potentially affect the compositions of the produced fluids. Forecasting these effects requires relative permeability data for gas-condensate flow in the rock in the presence of immobile water saturation. In this study, relative permeability measurements have been conducted on reservoir rock at a variety of conditions. The goal has been to determine the sensitivity to interfacial tension (which varies with pressure) and fluid type (reservoir fluids, pure hydrocarbons, and water). The results show a significant sensitivity to fluid type, as well as an interfacial tension sensitivity that is similar to that reported by other researchers. For obtaining relative permeability data that is applicable to a specific reservoir, we conclude that laboratory measurements should be conducted at reservoir conditions with actual reservoir fluids.The measurements reported here used a state-of-the-art relative permeability apparatus of in-house design. The apparatus uses elevated temperature and pressure, precision pumps, and a sight glass with automated interface tracking. Closed-loop recirculation avoids the need for large quantities of reservoir fluids and ensures that the gas and liquid are in compositional equilibrium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.