Allotypes of the natural killer (NK) cell receptor KIR3DL1 vary in both NK cell expression patterns and inhibitory capacity upon binding to their ligands, HLA-B Bw4 molecules, present on target cells. Using a sample size of over 1,500 human immunodeficiency virus (HIV)+ individuals, we show that various distinct allelic combinations of the KIR3DL1 and HLA-B loci significantly and strongly influence both AIDS progression and plasma HIV RNA abundance in a consistent manner. These genetic data correlate very well with previously defined functional differences that distinguish KIR3DL1 allotypes. The various epistatic effects observed here for common, distinct KIR3DL1 and HLA-B Bw4 combinations are unprecedented with regard to any pair of genetic loci in human disease, and indicate that NK cells may have a critical role in the natural history of HIV infection.
Summary Hepatocellular carcinoma (HCC) is the second most common cause of cancer related death. Non-alcoholic fatty liver disease (NAFLD) affects a large proportion of the US population and is considered a metabolic predisposition to liver cancer 1-5. However, the role of adaptive immune responses in NAFLD-promoted HCC is largely unknown. Here, we show that dysregulation of lipid metabolism in NAFLD causes a selective loss of intrahepatic CD4+ but not CD8+ T lymphocytes leading to accelerated hepatocarcinogenesis. We also found that CD4+ T lymphocytes have greater mitochondrial mass than CD8+ T lymphocytes and generate higher levels of mitochondrially-derived reactive oxygen species (ROS). Disruption of mitochondrial function by linoleic acid, a fatty acid accumulated in NAFLD, causes more oxidative damage than other free fatty acids such as palmitic acid, and mediates selective loss of intrahepatic CD4+ T lymphocytes. In vivo blockade of ROS reversed NAFLD-induced hepatic CD4+ T lymphocyte decrease and delayed NAFLD-promoted HCC. Our results provide an unexpected link between lipid dysregulation and impaired anti-tumor surveillance.
Interleukin-2 (IL-2) signaling requires the dimerization of the IL-2 receptor beta.(IL-2R beta) and common gamma (gamma c) chains. Mutations of gamma c can result in X-linked severe combined immunodeficiency (XSCID). IL-2, IL-4, IL-7 (whose receptors are known to contain gamma c), and IL-9 (whose receptor is shown here to contain gamma c) induced the tyrosine phosphorylation and activation of the Janus family tyrosine kinases Jak1 and Jak3. Jak1 and Jak3 associated with IL-2R beta and gamma c, respectively; IL-2 induced Jak3-IL-2R beta and increased Jak3-gamma c associations. Truncations of gamma c, and a gamma c, point mutation causing moderate X-linked combined immunodeficiency (XCID), decreased gamma c-Jak3 association. Thus, gamma c mutations in at least some XSCID and XCID patients prevent normal Jak3 activation, suggesting that mutations of Jak3 may result in an XSCID-like phenotype.
SummarySince the discovery of triggering receptor expressed on myeloid cells (TREM)-1 in 2000, evidence documenting the profound ability of the TREM and TREM-like receptors to regulate inflammation has rapidly accumulated. Monocytes, macrophages, myeloid dendritic cells, plasmacytoid dendritic cells, neutrophils, microglia, osteoclasts and platelets all express at least one member of the TREM family, underscoring the importance of these proteins in the regulation of innate resistance. Recent work on the TREM family includes: characterization of a new receptor expressed on plasmacytoid dendritic cells; definition of a key role for TREM in inflammatory bowel disease and multiple sclerosis; an expanded list of diseases associated with the release of soluble forms of TREM proteins; and identification of the first well characterized TREM ligand: B7-H3, a ligand for TREM-like Transcript (TLT)-2. Moreover, analysis of TREM signaling has now identified key regulatory components and defined pathways that may be responsible for the complex functional interactions between the TREM and toll-like receptors. In addition, there is expanding evidence of a role for TREM in the regulation of integrin function via Plexin-A1. Together these new findings define the TREM and TREM-like receptors as pluripotent modifiers of disease through the integration of inflammatory signals with those associated with leukocyte adhesion.
T cell receptor (TCR) signaling requires activation of Zap-70 and Src family tyrosine kinases, but requirements for other tyrosine kinases are less clear. Combined deletion in mice of two Tec kinases, Rlk and Itk, caused marked defects in TCR responses including proliferation, cytokine production, and apoptosis in vitro and adaptive immune responses to Toxoplasma gondii in vivo. Molecular events immediately downstream from the TCR were intact in rlk-/-itk-/- cells, but intermediate events including inositol trisphosphate production, calcium mobilization, and mitogen-activated protein kinase activation were impaired, establishing Tec kinases as critical regulators of TCR signaling required for phospholipase C-gamma activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.