Inadequate dissolved oxygen in the aquatic environment is a well-established cause of fish morbidity and mortality. The specific effects of hypoxia on immune function in fish, however, are not well characterized. In this study, the effects of acute hypoxia followed by reoxygenation (rapid tissue reperfusion) as a source of immunocompromise in Nile tilapia Oreochromis niloticus were investigated. Using a precision apparatus developed in our laboratory for hypoxia exposures, a series of assays of increasing specificity for immune function were performed on acutely hypoxia-stressed Nile tilapia: tier I consisted of histopathology, tier II of hematology, plasma chemistry, and determining cortisol concentration, and tier III of determining the phagocytic index and analyzing the expression of the cytokines transforming growth factor-beta (TGF-beta) and interleukin-1beta (IL-1beta). Nile tilapia were exposed to 7% oxygen saturation for 96 h, then tank water was rapidly reoxygenated. Sampling intervals were 48 and 96 h during hypoxia and 12 and 84 h during reperfusion. Histopathology showed no remarkable microscopic abnormalities in lymphoid or other tissues. Lymphopenia and neutrophilia were observed in peripheral blood. Plasma total protein, partial pressure of oxygen, and oxygen saturation were decreased in response to hypoxia. Plasma lipase decreased in response to hypoxia but returned to normal during reperfusion. Phagocytic capability and the phagocytic index decreased during hypoxia and 12 h reperfusion, whereas these values were recovered by 84 h reperfusion. The TGF-beta transcription continued to increase during the exposures, the greatest production being at 12 h reperfusion, whereas IL-1beta transcription decreased in response to hypoxia and reperfusion. We conclude that acute hypoxia triggered an overall downregulation of the immune system in the test fish. This suggests a possible factor in the pathogenesis of disease outbreaks in fish in which repeated, sublethal bouts of environmentally induced hypoxia lead to increased disease susceptibility and individual mortalities rather than massive fish kills.
Polychlorinated biphenyls (PCBs) are widespread environmental contaminants that have been linked to oxidative and other toxic effects in both humans and wildlife. Due to recent environmental health concerns at a PCB contaminated Superfund site near Raleigh, NC, we used a common clam species (Corbicula fluminea) as surrogates to isolate the effects of PCBs on threatened bivalves native to the region. Under controlled laboratory conditions, clams were exposed to 0, 1, 10, or 100 ppb Aroclor 1260 in the ambient water for 21 days. Measured biomarkers spanned a range of effective levels of biological organization including low molecular weight antioxidants, lipid-soluble antioxidants, and whole tissue radical absorption capacity. These data were augmented by use of histological evaluation of whole samples. Aroclor 1260 significantly increased reduced glutathione (GSH) and total protein concentrations at all treatments levels. Significant decreases were measured in all treatments in γ -tocopherol and total oxidant scavenging capacity (TOSC) and α-tocopherol values in the 100 ppb exposure. Histologically, Aroclor 1260 caused significant gonadal atrophy, effacement of gonad architecture with accumulations of Brown cells, and inflammation and necrosis in digestive glands and foot processes. Our results indicate that oxidative mechanisms play a significant role in the decreased health of these clams due to exposure to Aroclor 1260. The changes in the gonads of exposed clams suggest that a serious threat to bivalve reproduction exists due to PCB exposure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.