The reproduction number is broadly considered as a key indicator for the spreading of the COVID-19 pandemic. Its estimated value is a measure of the necessity and, eventually, effectiveness of interventions imposed in various countries. Here we present an online tool for the data-driven inference and quantification of uncertainties for the reproduction number, as well as the time points of interventions for 51 European countries. The study relied on the Bayesian calibration of the SIR model with data from reported daily infections from these countries. The model fitted the data, for most countries, without individual tuning of parameters. We also compared the results of SIR and SEIR models, which give different estimates of the reproduction number, and provided an analytical relationship between the respective numbers. We deployed a Bayesian inference framework with efficient sampling algorithms, to present a publicly available graphical user interface (https://cse-lab.ethz.ch/coronavirus) that allows the user to assess and compare predictions for pairs of European countries. The results quantified the rate of the disease's spread before and after interventions, and provided a metric for the effectiveness of non-pharmaceutical interventions in different countries. They also indicated how geographic proximity and the times of interventions affected the progression of the epidemic.
The systematic identification of infected individuals is critical for the containment of the COVID-19 pandemic. Currently, the spread of the disease is mostly quantified by the reported numbers of infections, hospitalisations, recoveries and deaths; these quantities inform epidemiology models that provide forecasts for the spread of the epidemic and guide policy making. The veracity of these forecasts depends on the discrepancy between the numbers of reported, and unreported yet infectious, individuals. We combine Bayesian experimental design with an epidemiology model and propose a methodology for the optimal allocation of limited testing resources in space and time, which maximises the information gain for such unreported infections. The proposed approach is applicable at the onset and spread of the epidemic and can forewarn of a possible recurrence of the disease after relaxation of interventions. We examine its application in Switzerland; the open source software is, however, readily adaptable to countries around the world. We find that following the proposed methodology can lead to vastly less uncertain predictions for the spread of the disease, thus improving estimates of the effective reproduction number and the future number of unreported infections. This information can provide timely and systematic guidance for the effective identification of infectious individuals and for decision-making regarding lockdown measures and the distribution of vaccines.
The reproduction number (R0) is broadly considered as a key indicator for the spreading of the COVID-19 pandemic. The estimation of its value with respect to the key threshold of 1.0 is a measure of the need, and eventually effectiveness, of interventions imposed in various countries. Here we present an online tool for the data driven inference and quantification of uncertainties for R0 as well as the time points of interventions for 51 European countries. The study relies on the Bayesian calibration of the simple and well established SIR model with data from reported daily infections. The model is able to fit the data for most countries without individual tuning of parameters. We deploy an open source Bayesian inference framework and efficient sampling algorithms to present a publicly available GUI (https://www.cse-lab.ethz.ch/coronavirus/) that allows the user to assess custom data and compare predictions for pairs of European countries. The results provide a ranking based on the rate of the disease's spread suggesting a metric for the effectiveness of social distancing measures. They also serve to demonstrate how geographic proximity and related times of interventions can lead to similarities in the progression of the epidemic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.