A single competitive football season did not adversely affect dynamic postural control when comparing football players to cheerleaders who do not experience repetitive head impacts. Furthermore, there were limited relationships with head impact kinematics suggesting that a single season of football does not adversely affect most outcome measures of instrumented dynamic postural control. These findings are consistent with most studies which fail to identify clinical differences related to repetitive head impacts.
A rearfoot strike (RFS) pattern with increased average vertical loading rates (AVLR) while running has been associated with injury. This study evaluated the ability of an instrumented sock, which provides real-time foot strike and cadence audio biofeedback, to transition previously injured military service members from a RFS to a non-rearfoot strike (NRFS) running pattern. Nineteen RFS runners (10 males, 9 females) were instructed to wear the instrumented socks to facilitate a change in foot strike while completing an independent walk-to-run progression and lower extremity exercise program. Kinetic data were collected during treadmill running while foot strike was determined using video analysis at initial (T1), post-intervention (T2), and follow-up (T3) data collections. Nearly all runners (18/19) transitioned to a NRFS pattern following intervention (8 ± 2.4 weeks after the initial visit). Most participants (16/18) maintained the transition at follow-up (5 ± 0.8 weeks after the post-intervention visit). AVLR of the involved and uninvolved limb decreased 29% from initial [54.7 ± 13.2 bodyweights per sec (BW/s) and 55.1 ± 12.7 BW/s] to post-intervention (38.7 ± 10.1 BW/s and 38.9 ± 10.0 BW/s), respectively. This effect persisted 5-weeks later at follow-up, representing an overall 30% reduction on the involved limb and 24% reduction on the uninvolved limb. Cadence increased from the initial to the post-intervention time-point (p = 0.045); however, this effect did not persist at follow-up (p = 0.08). With technology provided feedback from instrumented socks, approximately 90% of participants transitioned to a NRFS pattern, decreased AVLR, reduced stance time and maintained these running adaptations 5-weeks later.
BackgroundIt is not known whether the effects on altered running style which are attributed to minimalist footwear can be achieved by verbal instructions in standard running shoes (SRS).AimTo explore the effect of Vibram FiveFingers (VFF) versus SRS plus running instruction on lower extremity spatiotemporal parameters and lower limb joint kinematics.Methods35 healthy subjects (mean=30 years, 18 females) were assessed on two occasions with 3D motion analysis. At each session subjects ran on a treadmill (3.58 m/s) for 2 min in either VFF or SRS (randomised order); with and without running instruction. Differences between spatiotemporal parameters and lower limb joint kinematics between conditions were assessed using a 2x2 repeated-measures ANOVA.ResultsWearing VFF significantly increased cadence (p<0.001) and reduced stride length (p<0.01). Prior to initial contact, both instruction and VFF significantly increased foot (p<0.001 and p=0.02, respectively) and ankle (p<0.001 and p=0.02, respectively) plantarflexion, while wearing VFF significantly increased knee extension (p=0.04). At initial contact, instruction significantly increased knee flexion (p=0.04), and foot (p=0.001) and ankle (p=0.03) plantarflexion. At mid-stance and toe-off, instruction significantly increased knee flexion (p=0.048 and p<0.001, respectively) and foot plantarflexion (p<0.001 and p=0.01, respectively). Instruction had a greater effect on increasing knee flexion (p=0.007) and plantarflexion angle (p<0.001) when subjects wore SRS and VFF, respectively.ConclusionAlterations in spatiotemporal parameters observed when running in VFF are likely to be attributable to the minimalist footwear. However, the kinematic adaptations observed following instruction suggests that changes in joint angles previously attributed to minimalist footwear alone may be similarly achieved with instruction.
Two-dimensional (2D) video is often used to evaluate running gait. Cost effective and clinically applicable methods have not been validated. The objective of this study was to evaluate the concurrent validity and agreement of methods used to determine step rate (SR) and foot strike pattern (FSP) during running using 2D video. We observed excellent agreement assessing SR from a 30 Hertz (Hz) video for 10 seconds (s) and multiplying it by 6. We observed excellent interrater agreement assessing FSP for 10s at 240 Hz. These 10s methods for assessing running may be used to inform clinical decision making when evaluating running gait. Key point's Two-dimensional video assessment at 30 Hz demonstrated high intra-and interrater reliability for detecting step rate; the 10-second method is valid and reliable for detecting step rate when compared to the 60-second method; Detecting foot strike using a 2-point scale is more reliable at 240Hz rather than 30Hz.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.