The interplay among nucleotide excision repair, cell-cycle regulation, and apoptosis in the UV-exposed epidermis is extremely important to avoid mutations and malignant transformation. In Xpc ؊/؊ mice deficient in global genome nucleotide excision repair (GGR), a cell-cycle arrest of epidermal cells in late S-phase [with near-double normal diploid (4N) DNA content] was observed 48 -72 h after UV exposure. This arrest resolved without apoptosis (96 -168 h). We surmised that these arrested keratinocytes with persistent DNA damage were removed by epidermal turnover. In vivo BrdUrd pulse-chase labeling (>17 h after UV exposure) showed that DNA replication after UV exposure was resumed in Xpc ؊/؊ mice, but it did not reveal any evidence of retained BrdUrd-labeled S-phase cells in the basal layer of the epidermis at 72 h. Interestingly, by this time a maximum number of cytokeratin 10-negative and cytokeratin 5-positive cells had appeared in the suprabasal epidermal cell layers of UV-exposed Xpc ؊/؊ mice. Accumulation of these ''basal cell''-like keratinocytes in the suprabasal layers was clearly aberrant and was not observed in WT and heterozygous mice. Flow cytometric analyses of single-cell suspensions from UV-exposed Xpc ؊/؊ epidermis further showed that the ''near-4N'' arrested cells retained cytokeratin 5 and lacked cytokeratin 10. Hence, we conclude that the arrested near-4N cells became detached from the basal layer without entering a proper differentiation program and were indeed subsequently lost through the epidermal turnover. This expulsion apparently constitutes an alternative route, different from in situ apoptosis, to eliminate DNA-damaged arrested cells from the epidermis.cell-cycle arrest ͉ differentiation ͉ epidermis ͉ turnover
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.