Advances in control engineering and material science made it possible to develop small-scale unmanned aerial vehicles (UAVs) equipped with cameras and sensors. These UAVs enable us to obtain a bird's eye view of the environment. Having access to an aerial view over large areas is helpful in disaster situations, where often only incomplete and inconsistent information is available to the rescue team. In such situations, airborne cameras and sensors are valuable sources of information helping us to build an ''overview'' of the environment and to assess the current situation.This paper reports on our ongoing research on deploying small-scale, battery-powered and wirelessly connected UAVs carrying cameras for disaster management applications. In this ''aerial sensor network'' several UAVs fly in formations and cooperate to achieve a certain mission. The ultimate goal is to have an aerial imaging system in which UAVs build a flight formation, fly over a disaster area such as wood fire or a large traffic accident, and deliver high-quality sensor data such as images or videos. These images and videos are communicated to the ground, fused, analyzed in real-time, and finally delivered to the user.In this paper we introduce our aerial sensor network and its application in disaster situations. We discuss challenges of such aerial sensor networks and focus on the optimal placement of sensors. We formulate the coverage problem as integer linear program (ILP) and present first evaluation results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.