SUMMARY Protein function is regulated by diverse posttranslational modifications. The mitochondrial sirtuin SIRT5 removes malonyl and succinyl moieties from target lysines. The spectrum of protein substrates subject to these modifications is unknown. We report systematic profiling of the mammalian succinylome, identifying 2,565 succinylation sites on 779 proteins. Most of these do not overlap with acetylation sites, suggesting differential regulation of succinylation and acetylation. Our analysis reveals potential impacts of lysine succinylation on enzymes involved in mitochondrial metabolism; e.g., amino acid degradation, the tricarboxylic acid cycle (TCA) cycle, and fatty acid metabolism. Lysine succinylation is also present on cytosolic and nuclear proteins; indeed, we show that a substantial fraction of SIRT5 is extra-mitochondrial. SIRT5 represses biochemical activity of, and cellular respiration through, two protein complexes identified in our analysis, pyruvate dehydrogenase complex and succinate dehydrogenase. Our data reveal widespread roles for lysine succinylation in regulating metabolism and potentially other cellular functions.
Protein post-translational modifications (PTMs) at the lysine residue, such as lysine methylation, acetylation, and ubiquitination, are diverse, abundant, and dynamic. They play a key role in the regulation of diverse cellular physiology. Here we report discovery of a new type of lysine PTM, lysine malonylation (Kmal). Kmal was initially detected by mass spectrometry and protein sequence-database searching. The modification was comprehensively validated by Western blot, tandem MS, and high-performance liquid chromatography of synthetic peptides, isotopic labeling, and identification of multiple Kmal substrate proteins. Kmal is a dynamic and evolutionarily conserved PTM observed in mammalian cells and bacterial cells. In addition, we demonstrate that Sirt5, a member of the class III lysine deacetylases, can catalyze lysine demalonylation and lysine desuccinylation reactions both in vitro and in vivo. This result suggests the possibility of nondeacetylation activity of other class III lysine deacetylases, especially those without obvious acetylation protein substrates. Our results therefore reveal a new type of PTM pathway and identify the first enzyme that can regulate lysine malonylation and lysine succinylation status. Molecular & Cellular Proteomics 10: 10.1074/ mcp.M111.012658, 1-12, 2011.Cellular function and physiology are largely determined by the inventory of all proteins in a cell, its proteome. The collection and characterization of the proteome is critical to understanding cellular mechanisms and diseases. Proteomes in eukaryotic cells consist of over a million molecular species of proteins, easily orders of magnitude more complex than the corresponding genomes (1, 2). There are two major mechanisms for expanding the coding capacity of the human genome: mRNA splicing and protein post-translational modifications (PTMs)1 . PTMs (more than 300 types) are complex and fundamental mechanisms of cellular regulation, and have been associated with almost all known cellular pathways and disease processes (1, 2). As an example, protein phosphorylation, the most well-studied PTM, is present in more than one third of human proteins, the phosphorylation status of which can potentially be regulated by ϳ500 human protein kinases and ϳ150 phosphatases (3, 4). The modification mainly occurs at several amino acid residues: serine, threonine, tyrosine, and histidine. Protein phosphorylation makes its substrate residues more acidic, hydrophilic, and induces a charge change from ϩ1 charge to -1 (at physiological pH), which in turn modulates the structure and functions of substrate proteins.The high complexity of PTMs is also reflected by diverse modifications at -amine group of lysine residue, including methylation, acetylation, and ubiquitination. These lysine PTMs have been shown to play an important role in cellular regulations (5, 6). Recently, we identified a new type of PTM at lysine residues, lysine succinylation (7). Like phosporylation, lysine succinylation also induces a change of two negative charges in lysine re...
Mutations in the S. cerevisiae RAD27 (also called RTH1 or YKL510) gene result in a strong mutator phenotype. In this study we show that the majority of the resulting mutations have a structure in which sequences ranging from 5-108 bp flanked by direct repeats of 3-12 bp are duplicated. Such mutations have not been previously detected at high frequency in the mutation spectra of mutator strains. Epistasis analysis indicates that RAD27 does not play a major role in MSH2-dependent mismatch repair. Mutations in RAD27 cause increased rates of mitotic crossing over and are lethal in combination with mutations in RAD51 and RAD52. These observations suggest that the majority of replication errors that accumulate in rad27 strains are processed by double-strand break repair, while a smaller percentage are processed by a mutagenic repair pathway. The duplication mutations seen in rad27 mutants occur both in human tumors and as germline mutations in inherited human diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.