The present study investigated the effect of 21 days of horizontal bed rest on cutaneous cold and warm sensitivity, and on behavioural temperature regulation. Healthy male subjects (N = 10) were accommodated in a hospital ward for the duration of the study and were under 24-h medical care. All activities (eating, drinking, hygiene, etc.) were conducted in the horizontal position. On the 1st and 22nd day of bed rest, cutaneous temperature sensitivity was tested by applying cold and warm stimuli of different magnitudes to the volar region of the forearm via a Peltier element thermode. Behavioural thermoregulation was assessed by having the subjects regulate the temperature of the water within a water-perfused suit (T (wps)) they were wearing. A control unit established a sinusoidal change in T (wps), such that it varied from 27 to 42 degrees C. The subjects could alter the direction of the change of T (wps), when they perceived it as thermally uncomfortable. The magnitude of the oscillations towards the end of the trial was assumed to represent the upper and lower boundaries of the thermal comfort zone. The cutaneous threshold for detecting cold stimulus decreased (P < 0.05) from 1.6 (1.0) degrees C on day 1 to 1.0 (0.3) degrees C on day 22. No effect was observed on the ability to detect warm stimuli or on the regulated T (wps). We conclude that although cold sensitivity increased after bed rest, it was not of sufficient magnitude to cause any alteration in behavioural thermoregulatory responses.
Due to the static and dynamic activity of the skin temperature sensors, the cutaneous thermal afferent information is dependent on the rate and direction of the temperature change, which would suggest different perceptions of temperature and of thermal comfort during skin heating and cooling. This hypothesis was tested in the present study. Subjects (N = 12; 6 females and 6 males) donned a water-perfused suit (WPS) in which the temperature was varied in a saw-tooth manner in the range from 27 to 42 °C. The rate of change of temperature of the water perfusing the suit (TWPS) was 1.2 °C min−1 during both the heating and cooling phases. The trial was repeated thrice, with subjects reporting their perception of the temperature and thermal comfort at each 3 °C change in TWPS. In addition, subjects were instructed to report when they perceived TWPS uncomfortably cool and warm during cooling and heating, respectively. Subjects reproducibly identified the boundaries of their Thermal Comfort Zone (TCZ), defined as the lower (Tlow) and upper (Thigh) temperatures at which subjects reported slight thermal discomfort. During the heating phase, Tlow and Thigh were 30.0 ± 1.5 °C and 35.1 ± 2.9 °C, respectively. During the cooling phase, the boundary temperatures of Tlow and Thigh were 35.4 ± 1.9 °C and 38.7 ± 2.3 °C, respectively. The direction of the change in the cutaneous temperature stimulus affects the boundaries of the TCZ, such that they are higher during cooling and lower during heating. These findings are explained on the basis of the neurophysiology of thermal perception. From an applied perspective, the most important observation of the present study was the strong correlation between the perception of thermal comfort and the behavioral regulation of thermal comfort. Although it is not surprising that the action of regulating thermal comfort is aligned with its perception, this link has not been proven for humans in previous studies. The results therefore provide a sound basis to consider ratings of thermal comfort as reflecting behavioral actions to achieve the sensation of thermal neutrality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.