INTRODUÇÃOCélula a combustível é um dispositivo que converte eletroquimicamente combustíveis químicos em eletricidade; é, essencialmente, uma bateria que não para de fornecer corrente elétrica por causa da contínua alimentação externa de combustível. Em outras palavras, é uma bateria na qual os dois eletrodos não são consumidos durante a descarga, mas agem simplesmente como locais para a reação entre combustível e oxidante [1]. Células a combustível convertem energia química diretamente em energia elétrica com eficiência termodinâmica não limitada pelo ciclo de Carnot [2,3]. Essa vantagem das células a combustível depende, entretanto, de como os combustíveis que serão utilizados podem ser reformados para produzir hidrogênio e dióxido de carbono [4]. Toda célula a combustível é composta de uma seqüência de unidades, cada uma com quatro componentes: o eletrólito, o eletrodo para o ar (ar é o oxidante), o eletrodo para o combustível (o mais comum é o hidrogênio), e o interconector.Muitos tipos de células a combustível foram desenvolvidos, sendo as células classificadas geralmente de acordo com o tipo de eletrólito. Os cinco principais tipos são:1-célula a combustível de ácido fosfórico, operacional a 180 o C; 2-célula a combustível de membrana trocadora de prótons, ou célula a combustível de eletrólito de membrana polimérica, operacional na faixa de temperatura 60-80 o C; 3-célula a combustível de eletrólito alcalino, operacional a temperaturas relativamente baixas (80 o C). Tem sido usada no ônibus espacial como principal fonte de energia. Embora tenha operado confiável e eficientemente em missões espaciais por mais de 40 anos, não tem sido usada para outras finalidades, principalmente por causa do alto custo ResumoA partir da definição de células a combustível, é feita uma introdução sucinta dos tipos de células e dos materiais cerâmicos que são empregados em projeto e fabricação destes dispositivos geradores de energia elétrica. Tomando por base a ampla literatura científica disponível em publicações periódicas internacionais indexadas e arbitradas, bem como patentes, são relatados com detalhes os materiais cerâmicos com comportamento elétrico adequado para uso como eletrólitos, anodos, catodos, interconectores e selantes, que são os componentes básicos de células a combustível de óxidos sólidos. Por fim, é feita uma avaliação do estado da arte na pesquisa e desenvolvimento de materiais cerâmicos para uso em células a combustível de óxidos sólidos. Palavras-chave: célula a combustível, eletrólito sólido, anodo, catodo, interconector. Abstract Basic definitions of fuel cells and a brief introduction of different types of fuel cells
Self-assembled monolayers (SAMs) of N,N′bis(2-phosphonoethyl)-3,4,9,10-perylenediimide (PPDI), a perylene dye substituted with phosphonic acid groups, were deposited on indium tin oxide (ITO) substrates. Dye deposition was confirmed by UV−visible absorption spectroscopy and by electrochemical methods. Electrochemical characterization of the SAM was performed using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Two reversible redox waves were observed by CV for the PPDI monolayer, corresponding to E 1/2 = −0.49 V (radical anion formation) and E 1/2 = −0.90 V (dianion formation). The effect of applied bias on the EIS response was studied, comparing a region where PPDI was not reduced (applied bias = 0 V) with a region within the redox window of the imide (applied bias = −0.6 V). The EIS results were analyzed using either impedance (Nyquist and Bode) or capacitance (Cole−Cole) diagrams. Capacitance plots were shown to be by far more sensitive to study the faradaic activity of the SAM, allowing the determination of both the pseudocapacitance (C pc ) for charging the monolayer and the heterogeneous electron transfer rate constant (k et ) from the electrode to the SAM. A molecular coverage of 7 × 10 −11 mol/cm 2 was calculated for the SAM from the pseudocapacitance. A value of k et = 41 s −1 was obtained, consistent with literature data for similar systems.
Recebido em 4/4/06; aceito em 16/3/07; publicado na web em 17/7/07 DIRECTIONS OF THE INDUSTRIAL DEVELOPMENT OF THE SOLID OXIDE FUEL CELLS TECHNOLOGY. This manuscript shows an overview of the solid oxide fuel cell (SOFC) technology based on industrial developments. The information presented has been collected mostly at conferences that the authors attended. It is observed that several companies have been pursuing the development of the SOFC technology. Significant advances in stability and power density have raised the economic interest in this technology recently. It is revealed that the SOFC materials are essentially the same ones that have been used in the past decades, and that the two most important designs of pre-commercial SOFC prototypes are the tubular and planar ones.Keywords: solid oxide fuel cell; industrial development; energy production. INTRODUÇÃOAs células a combustível de óxidos sólidos (CCOS, SOFC -"Solid Oxide Fuel Cell") são os dispositivos conhecidos mais eficientes para a conversão eletroquímica de um combustível em energia elétrica 1 . O funcionamento destes dispositivos baseia-se nos princípios eletroquímicos das células a combustível, onde a energia química de um combustível é convertida diretamente em energia elétrica, sem os limites impostos pelo ciclo de Carnot às má-quinas térmicas 2 . Nas CCOS as reações eletroquímicas de oxidação do combustível e de redução do oxidante ocorrem na interface gás (combustível ou oxidante) condutor eletrônico/condutor iônico, chamada de contorno de fase tripla ou tripla fase reacional. Uma célula unitária de óxidos sólidos consiste, essencialmente, de dois eletrodos porosos (catodo e anodo) separados por um eletrólito sólido denso. No anodo o combustível é oxidado, reagindo com os íons oxigênio provenientes do eletrólito, liberando elétrons e formando água. Os elétrons produzidos no anodo são transportados pelo circuito externo até o catodo onde o oxigênio é reduzido e os íons formados atravessam o eletrólito em direção ao anodo, completando a reação. O trabalho elétrico é realizado pelos elétrons do circuito externo. Na Figura 1 são apresentados o esquema de funcionamento e a reação global de uma CCOS.Considerando-se a geração de energia distribuída, a CCOS apresenta diversas vantagens em relação a outras tecnologias concorrentes, como motores a diesel e microturbinas a gás, ou mesmo outros tipos de células a combustível. Na Figura 2 é mostrado um diagrama comparativo de algumas propriedades de sistemas de geração (estacionária) de energia elétrica. Pode-se observar que as CCOS são os dispositivos que apresentam maiores eficiências e menores emissões de poluentes comparativamente às outras tecnologias. Entretanto, o principal fator que inibe a comercialização destes dispositivos ainda é o elevado custo da tecnologia.Entre as diferentes tecnologias de células a combustível, a CCOS destaca-se por ser o único dispositivo inteiramente no estado sóli-do. Outra importante característica que diferencia as CCOS das
Perovskite-type La0.8Sr0.2Co0.8Fe0.2O32d powders were prepared using a complex polymeric precursor method. Thermal analysis\ud was carried out on the perovskite precursor to investigate the oxide-phase formation. The structural phase of the powders was\ud determined by X-ray diffraction. These results showed that the decomposition of the precursors occurs in a two-step reaction and\ud temperatures higher that 1000°C are required for these decomposition reactions. For the electrochemical characterization,\ud La0.8Sr0.2Co0.8Fe0.2O32d electrodes were deposited by a wet spray technique on dense yttria-stabilized zirconia ~YSZ! layers. The\ud morphology of the deposited perovskite thick films (;50 mm) was investigated by field emission scanning electron microscopy\ud and showed a porous microstructure. Electrochemical impedance spectroscopy ~EIS! measurements were carried out under synthetic\ud air flux at temperatures ranging from 200-600°C in the 10 mHz-10 MHz frequency range showing an interfacial electrical\ud resistance related to the La0.8Sr0.2Co0.8Fe0.2O32d electrodes. EIS measurements were also performed in the same frequency range\ud at different oxygen partial pressures (1025-1 atm) at 600°C. At this temperature and frequencies below 0.1 MHz, the electrical\ud response to the applied signal of the electrode material is best fitted by two semicircles, which can be related to charge-transfer processes. The activation energy for the limiting step ~adsorption/desorption! was found to be 1.6 eV
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.