Pipe design is one of the most significant research lines in the area of parabolic semi-cylindrical solar collectors. The main idea behind pipe design is to increase the capillarity angle by expanding the total area being heated, therefore boosting the work capacity of the device. Such capillarity depends on several factors, whose numerical calculations are highly complex. Moreover, some of those variables are integers, whereas some others are real; hence, it is necessary to use optimization techniques that are capable of searching in those numerical spaces. There are several optimization tools that allow individual codification as binary strings, granting the coding of integer, real, or any other, as part of the same individual. Consequently, in this paper we propose the comparison of four metaheuristics when they are utilized to maximize the capillarity angle of the pipe in a parabolic trough. Experimental results show a better performance of binary particle swarm optimization when compared against the other techniques, achieving improvements in the capillarity angle of on average 11 % in comparison with a similar study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.