Experiments and theoretical calculations by density functional theory (DFT) have been carried out to examine a self-sensitized type I photooxidation of toluidine blue O (TBO+). This study attempts to build a connection between visible-light photolysis and demethylation processes of methylamine compounds, such as TBO+. We show that controlled photoinduced mono- and double-demethylation of TBO+ can be achieved. The kinetics for the appearance rate of the mono-demethylated TBO+ and the double-demethylated TBO+ were found to fit pseudo-first-order kinetics. DFT calculations have been used to examine the demethylation of TBO+ and included N,N-dimethylaniline as a model compound for TBO+. The results show an oxygen-dependent demethylation process. The mechanism for the sequential methyl loss is proposed to be due to H • or e–/H+ transfer to 3TBO+* followed by a reaction of TBO+• with O2, yielding a C-peroxyTBO+• intermediate. Instead of aminyl radical peroxyl formation, i.e., N-peroxyTBO+• , the C-centered peroxyTBO+• is favored, that upon dimerization (Russell mechanism) leads to dissociation of formaldehyde from the methylamine site.
Relevant antioxidant properties of non-phenolic 7-dialkyl-aminocoumarins against free radicals derived from 2,2′-azobis(2-amidinopropane) dihydrochloride under aerobic conditions have been experimentally and theoretically demonstrated.
Direct FXa inhibitors are an important class of bioactive molecules (rivaroxaban, apixaban, edoxaban, and betrixaban) applied for thromboprophylaxis in diverse cardiovascular pathologies. The interaction of active compounds with human serum albumin (HSA), the most abundant protein in blood plasma, is a key research area and provides crucial information about drugs’ pharmacokinetics and pharmacodynamic properties. This research focuses on the study of the interactions between HSA and four commercially available direct oral FXa inhibitors, applying methodologies including steady-state and time-resolved fluorescence, isothermal titration calorimetry (ITC), and molecular dynamics. The HSA complexation of FXa inhibitors was found to occur via static quenching, and the complex formation in the ground states affects the fluorescence of HSA, with a moderate binding constant of 104 M−1. However, the ITC studies reported significantly different binding constants (103 M−1) compared with the results obtained through spectrophotometric methods. The suspected binding mode is supported by molecular dynamics simulations, where the predominant interactions were hydrogen bonds and hydrophobic interactions (mainly π–π stacking interactions between the phenyl ring of FXa inhibitors and the indole moiety of Trp214). Finally, the possible implications of the obtained results regarding pathologies such as hypoalbuminemia are briefly discussed.
Toluidine blue O (TBO) is a water‐soluble photosensitizer that has been used in photodynamic antimicrobial and anticancer treatments, but suffers from limited solubility in hydrophobic media. In an effort to incrementally increase TBO’s hydrophobicity, we describe the synthesis of hexanoic (TBOC6) and myristic (TBOC14) fatty acid derivatives of TBO formed in low to moderate percent yields by condensation with the free amine site. Covalently linking 6 and 14 carbon chains led to modifications of not only TBO’s solubility, but also its photophysical and photochemical properties. TBOC6 and TBOC14 derivatives were more soluble in organic solvents and showed hypsochromic shifts in their absorption and emission bands. The solubility in phosphate buffer solution was low for both TBOC6 and TBOC14, but unexpectedly slightly greater in the latter. Both TBOC6 and TBOC14 showed decreased triplet excited‐state lifetimes and singlet oxygen quantum yields in acetonitrile, which was attributed to heightened aggregation of these conjugates particularly at high concentrations due to the hydrophobic “tails.” While in diluted aqueous buffer solution, indirect measurements showed similar efficiency in singlet oxygen generation for TBOC14 compared to TBO. This work demonstrates a facile synthesis of fatty acid TBO derivatives leading to amphiphilic compounds with a delocalized cationic “head” group and hydrophobic “tails” for potential to accumulate into biological membranes or membrane/aqueous interfaces in PDT applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.