In this paper we propose a new approach to find symbols in graphical documents. The method is based on a representation of the document in chain points extracted from the skeleton. We merge successively these chain points into a dendrogram framework and according to a measure of density. From the dendrogram, we extract potential symbols which can be recognized after.
Abstract. We propose to combine a feature descriptor method with a structural representation of symbols. An adaptation of the Radon transform, keeping main geometric transformations usually required for the recognition of symbols, is provided. In order to improve the recognition step we directly process on the grey level document. In this perspective, a three-dimensional signature integrates into a same formalism both the shape of the object and its photometric variations. More precisely the signature is computed within the symbol following several grey levels. Additionally a structural representation of symbols allows to localize into the document candidate symbols.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.