Common polymorphisms in the fat mass and obesity-associated gene (FTO) have shown strong association with obesity in several populations. In the present study, we explored the association of FTO gene polymorphisms with obesity and other biochemical parameters in the Mexican population. We also assessed FTO gene expression levels in adipose tissue of obese and nonobese individuals. The study comprised 788 unrelated Mexican-Mestizo individuals and 31 subcutaneous fat tissue biopsies from lean and obese women. FTO single-nucleotide polymorphisms (SNPs) rs9939609, rs1421085, and rs17817449 were associated with obesity, particularly with class III obesity, under both additive and dominant models (P = 0.0000004 and 0.000008, respectively). These associations remained significant after adjusting for admixture (P = 0.000003 and 0.00009, respectively). Moreover, risk alleles showed a nominal association with lower insulin levels and homeostasis model assessment of B-cell function (HOMA-B), and with higher homeostasis model assessment of insulin sensitivity (HOMA-S) only in nonobese individuals (P dom = 0.031, 0.023, and 0.049, respectively). FTO mRNA levels were significantly higher in subcutaneous fat tissue of class III obese individuals than in lean individuals (P = 0.043). Risk alleles were significantly associated with higher FTO expression in the class III obesity group (P = 0.047). In conclusion, FTO is a major risk factor for obesity (particularly class III) in the MexicanMestizo population, and is upregulated in subcutaneous fat tissue of obese individuals.
and 6 GE Healthcare plc, Amersham, United Kingdom N-methyl D-aspartate (NMDA) ion channels play a key role in a wide range of physiologic (e.g., memory and learning tasks) and pathologic processes (e.g., excitotoxicity). To date, suitable PET markers of NMDA ion channel activity have not been available. 18 F-GE-179 is a novel radioligand that selectively binds to the open/active state of the NMDA receptor ion channel, displacing the binding of 3 H-tenocyclidine from the intrachannel binding site with an affinity of 2.4 nM. No significant binding was observed with 10 nM GE-179 at 60 other neuroreceptors, channels, or transporters. We describe the kinetic behavior of the radioligand in vivo in humans. Methods: Nine healthy participants (6 men, 3 women; median age, 37 y) each underwent a 90-min PET scan after an intravenous injection of 18 F-GE-179. Continuous arterial blood sampling over the first 15 min was followed by discrete blood sampling over the duration of the scan. Brain radioactivity (KBq/mL) was measured in summation images created from the attenuation-and motion-corrected dynamic images. Metabolite-corrected parent plasma input functions were generated. We assessed the abilities of 1-, 2-, and 3-compartment models to kinetically describe cerebral time-activity curves using 6 bilateral regions of interest. Parametric volume-of-distribution (V T ) images were generated by voxelwise rank-shaping regularization of exponential spectral analysis (RS-ESA). Results: A 2-brain-compartment, 4-rate-constant model best described the radioligand's kinetics in normal gray matter of subjects at rest. At 30 min after injection, 37% of plasma radioactivity represented unmetabolized 18 F-GE-179. The highest mean levels of gray matter radioactivity were seen in the putamina and peaked at 7.5 min. A significant positive correlation was observed between K 1 and V T (Spearman ρ 5 0.398; P 5 0.003). Between-subject coefficients of variation of V T ranged between 12% and 16%. Voxelwise RS-ESA yielded similar V T s and coefficients of variation. Conclusion: 18 F-GE-179 exhibits high and rapid brain extraction, with a relatively homogeneous distribution in gray matter and acceptable between-subject variability. Despite its rapid peripheral metabolism, quantification of 18 F-GE-179 V T is feasible both within regions of interest and at the voxel level. The specificity of 18 F-GE-179 binding, however, requires further characterization with in vivo studies using activation and disease models.
ObjectiveTo demonstrate altered N-methyl-d-aspartate (NMDA) receptor availability in patients with focal epilepsies using positron emission tomography (PET) and [18F]GE-179, a ligand that selectively binds to the open NMDA receptor ion channel, which is thought to be overactive in epilepsy.MethodsEleven patients (median age 33 years, 6 males) with known frequent interictal epileptiform discharges had an [18F]GE-179 PET scan, in a cross-sectional study. MRI showed a focal lesion but discordant EEG changes in two, was non-localising with multifocal EEG abnormalities in two, and was normal in the remaining seven patients who all had multifocal EEG changes. Individual patient [18F]GE-179 volume-of-distribution (VT) images were compared between individual patients and a group of 10 healthy controls (47 years, 7 males) using Statistical Parametric Mapping.ResultsIndividual analyses revealed a single cluster of focal VT increase in four patients; one with a single and one with multifocal MRI lesions, and two with normal MRIs. Post hoc analysis revealed that, relative to controls, patients not taking antidepressants had globally increased [18F]GE-179 VT (+28%; p<0.002), and the three patients taking an antidepressant drug had globally reduced [18F]GE-179 VT (−29%; p<0.002). There were no focal abnormalities common to the epilepsy group.ConclusionsIn patients with focal epilepsies, we detected primarily global increases of [18F]GE-179 VT consistent with increased NMDA channel activation, but reduced availability in those taking antidepressant drugs, consistent with a possible mode of action of this class of drugs. [18F]GE-179 PET showed focal accentuations of NMDA binding in 4 out of 11 patients, with difficult to localise and treat focal epilepsy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.