A geochronological study of the Chocolay Group at the base of the Paleoproterozoic Marquette Range Supergroup in Michigan, Lake Superior Region, is attempted for the first time. Age data from detrital zircon grains and hydrothermal xenotime from the basal glaciogenic formation, the Enchantment Lake Formation, and the stratigraphically higher Sturgeon Quartzite and its equivalent, the Sunday Quartzite, provide maximum and minimum age constraints for the Chocolay Group. The youngest detrital zircon population in the Enchantment Lake Formation is 2317 ± 6 Ma; in the Sturgeon Quartzite, it is 2306 ± 9 Ma, and in the Sunday Quartzite, it is 2647 ± 5 Ma. The oldest hydrothermal xenotime age in the Enchantment Lake Formation is 2133 ± 11 Ma; in the Sturgeon Quartzite, it is 2115 ± 5 Ma, and in the Sunday Quartzite, it is 2207 ± 5 Ma. The radiometric age data in this study implies the depositional age of the Chocolay Group is constrained to ~2.32.2 Ga, which proves its correlation with part of the Huronian Supergroup in the Lake Huron Region, Ontario, and reveals the unconformity that separates the Chocolay Group from the overlying Menominee Group is up to 325 million years in duration. The source(s) of the ~ 2.3 Ga detrital zircon populations in the Enchantment Lake Formation and Sturgeon Quartzite remains an enigma because no known rock units of this age are known in the Michigan area. It is speculated that once widespread volcano-sedimentary cover sequences in Michigan were removed or concealed prior to Chocolay Group deposition. The hydrothermal xenotime ages probably reflect basinal hydrothermal fluid flow associated with the period of extension, involving rifting and major dyke formation, that affected the North American provinces between 2.2 and 2.1 Ga.
An ≈ 26 m thick unit of phosphatic sandstone and black shale (the Phosphatic Unit) in the Palaeoproterozoic Mount Barren Group of south‐western Australia contains abundant authigenic xenotime crystals showing well‐preserved diagenetic textures. Despite extensive regional deformation and thermal metamorphism, the peak of which occurred at ≈ 1205 Ma, the Phosphatic Unit was preserved as a low‐strain envelope because of its pre‐compaction carbonate and phosphate cementation. In situ U–Pb geochronology of xenotime reveals four discrete age populations at 1693 ± 4, 1645 ± 3, 1578 ± 10 and 1481 ± 21 Ma. When integrated with petrography, the age data place a timeframe on: (i) sediment deposition; (ii) phosphogenesis; (iii) diagenetic cement infilling; (iv) diagenetic pyrite formation; (v) secondary porosity generation; (vi) hydrocarbon migration; (vii) burial compaction; and (viii) hydrothermal alteration, up until peak thermal metamorphism. Xenotime growth at ≈ 1693 Ma occurred prior to compaction, whereas xenotime growth at ≈ 1645 Ma occurred during burial. Xenotime growth at ≈ 1580 Ma and at ≈ 1480 Ma appears to be the far‐field record of thermotectonic events associated with intracontinental extension and magmatism recorded elsewhere in Australia. Geochemical analysis, integrated with geochronology, shows a systematic increase in MREE/HREE in xenotime crystals with decreasing age and with increasing stratigraphic depth. Coupled with a decrease in xenotime abundance and age with depth, it suggests that: (i) the main focus of porosity infilling was at the top of the Phosphatic Unit and progressed downwards over the > 200 Myr period of porosity infilling, and (ii) the changes in xenotime REE chemistry may be due to an influx of MREE from increasing amounts of dissolved apatite or changes, with respect to REE solubility, in the physiochemical nature of the fluids with burial depth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.