Wood modification improves the properties of wood as a building material by altering the wood structure on a cellular level. This study investigated how dimensional changes of wood on a macroscopic scale are related to the cellular level chemical changes on the micron level after impregnation modification with melamine formaldehyde (MF) resin under different heat curing conditions. Our results showed that the curing conditions affected the polycondensation reactions and the morphological structure of the MF resin within the cell lumen. The diffusion of the resin into the cell wall was estimated based on the triazine ring vibration of melamine in the Raman spectrum at 950-990 cm −1. Thereby, it was shown that macroscopic changes in wood dimensions do not provide a reliable estimate for the cell wall diffusion of the resin. The removal of cell wall constituents during the modification, which was facilitated by the alkaline pH of the impregnation solution, counterbalanced the cell wall bulking effect of the resin. This was particularly evident for wet cured samples, where diffusion of MF resin into the cell wall was observed by confocal Raman microscopy, despite a reduction in macroscopic wood dimensions.
This study tests the hypothesis that thermal modification of wood influences the effectivity of air plasma treatment. Micro-veneers of European beech, Scots pine and Norway spruce were thermally modified at two different temperatures and subsequently plasma-treated for 1 and 3 s. The veneer surfaces were characterized in terms of morphology, wetting behaviour and surface chemistry. No severe changes in the veneer surfaces due to plasma treatment were observed by scanning electron microscopy. Plasma treatment increased surface free energy and wettability by water and urea–formaldehyde adhesive; it was more effective on thermally modified wood than on unmodified wood. X-ray photoelectron spectroscopy revealed a similar distribution of oxygen-containing functional groups on the wood surface after plasma treatment of thermally modified and unmodified beech wood. It is suggested that enhanced wettability through plasma treatment is due to the generation of carboxyl groups within the lignin network, which contribute to the polar part of the surface free energy. The high effectiveness of plasma treatment on thermally modified wood might thus be explained by its high relative proportion of lignin
Impregnation modification of wood with melamine formaldehyde resin reduces the adverse effects caused by moisture uptake, but the underlying modes of action are not fully understood. The present study showed that it is crucial to understand the sorption behavior of the pure resin when interpreting the behavior of resin-modified wood. Furthermore, the applied heat-curing conditions had a significant effect on the moisture uptake of resin-modified wood. At the same resin loads, dry curing conditions were more effective in causing a cell wall bulking effect than wet curing conditions. This reduced the water-accessible cell wall pore volume in dry cured wood and counterbalanced the moisture uptake by the resin. Deuterium exchange measurements suggested that the occupancy of cell wall pores reduced the number of simultaneously active sorption sites. However, there was no evidence that a swelling restraint or reduced mechanical relaxation affected the water sorption of resin-modified wood significantly.
The surface properties of wood particles are one of the key factors for the development of mechanical and physical properties of particleboards. Particles were treated with plasma at atmospheric pressure with ambient air in order to enhance the polarity of wooden surfaces. One-layer particle boards were produced from the plasma-treated particles by using 3, 5, and 8 % urea formaldehyde adhesive (related to the particles). For all adhesive ratios, internal bond strength was increased by approximately 0.1 MPa compared to the respective controls. The modulus of rupture, modulus of elasticity and water related properties were only improved compared to the respective controls at the lowest adhesive content. It is therefore concluded that the plasma treatment can improve the bonding quality and water related properties of particleboards particularly at low adhesive contents
Visualization of acetic anhydride flow and its heterogeneity within the wood block necessitates the development of a reliable and robust analytical method. Hyperspectral imaging has the potential to acquire a continuous spectrum of chemical analytes at different spectral channels in terms of pixels. The large set of chemical data (3-dimensional) can be expanded into relevant information in a multivariate fashion. We quantified gradients in acetylation degree over cross sections of Scots pine sapwood caused by a one-sided flow of acetic anhydride into wood blocks using nearinfrared hyperspectral imaging. A principal component analysis (PCA) model was used to decompose the high-dimensional data into orthogonal components. Moreover, a partial least-squares (PLS) hyperspectral image regression model was developed to quantify heterogeneity in acetylation degree that was affected by the flow of acetic anhydride through wood blocks and into the tracheid cell walls. The model was validated and optimized with an external test data set and a prediction map using the root-mean-squared error of an individual predicted pixel. The model performance parameters are well suited, and prediction of the acetylation degree at the image level was complemented with confocal Raman imaging of selected areas on the microlevel. NIR image regression showed that the acetylation degree was determined not only by the time-dependent flow of the acetic anhydride through the wood macropores but also by the diffusion of the anhydride into the wood cell walls. Thereby, thinwalled earlywood sections were acetylated faster than the thick-walled latewood sections. Our results demonstrate the suitability of near-infrared imaging as a tool for quality control and process optimization at the industrial scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.