Background-Fabry disease (FD) has been recognized as the cause of left ventricular hypertrophy in 6% of men with late-onset hypertrophic cardiomyopathy (HCM). Although FD is considered a recessive X-linked disorder, affected women are increasingly reported. The aim of our study was to determine the prevalence of FD in female patients with HCM. Methods and Results-Thirty-four consecutive women (mean age, 50Ϯ13.6 years) who received an ECG and echocardiographic diagnosis of HCM were submitted to an invasive cardiac study that included a biventricular endomyocardial biopsy. Tissue samples were analyzed for histology and electron microscopy. Peripheral blood activity of ␣-galactosidase (␣-Gal) A was assessed in all patients. None of them had a family history of FD. Histology and electron microscopy showed in 4 patients (12%; mean age, 51.5Ϯ3.9 years) the presence of cell vacuoles characterized by the accumulation of glycolipid material organized in concentric lamellar structures, diagnostic for FD. In the remaining patients, histology was consistent with HCM. In all the female carriers, the heart was the only organ clinically involved in the disease, showing concentric hypertrophy in 2 patients, asymmetric hypertrophy in 1, and apical hypertrophy in 1. The ␣-Gal A enzymatic activity was 44Ϯ14% of control values. Genetic analysis showed the presence of ␣-Gal A gene mutation in all 4 cases. Conclusions-FD may account for up to 12% of females with late-onset HCM. Those heterozygous for FD with left ventricular hypertrophy are potential candidates for enzyme enhancement/replacement therapy.
GM1 gangliosidosis and Morquio B syndrome, both arising from beta-galactosidase (GLB1) deficiency, are very rare lysosomal storage diseases with an incidence of about 1:100,000– 1:200,000 live births worldwide. Here we report the beta-galactosidase gene (GLB1) mutation analysis of 21 unrelated GM1 gangliosidosis patients, and of 4 Morquio B patients, of whom two are brothers. Clinical features of the patients were collected and compared with those in literature. In silico analyses were performed by standard alignments tools and by an improved version of GLB1 three-dimensional models. The analysed cohort includes remarkable cases. One patient with GM1 gangliosidosis had a triple X syndrome. One patient with juvenile GM1 gangliosidosis was homozygous for a mutation previously identified in Morquio type B. A patient with infantile GM1 gangliosidosis carried a complex GLB1 allele harbouring two genetic variants leading to p.R68W and p.R109W amino acid changes, in trans with the known p.R148C mutation.
Molecular analysis showed 27 mutations, 9 of which are new: 5 missense, 3 microdeletions and a nonsense mutation. We also identified four new genetic variants with a predicted polymorphic nature that was further investigated by in silico analyses.
Three-dimensional structural analysis of GLB1 homology models including the new missense mutations and the p.R68W and p.R109W amino acid changes, showed that all the amino acids replacements affected the resulting protein structures in different ways, from changes in polarity to folding alterations. Genetic and clinical associations led us to undertake a critical review of the classifications of late-onset GM1 gangliosidosis and Morquio B disease.
Mutational analysis of the IDUA gene was performed in a cohort of 102 European patients with mucopolysaccharidosis type I. A total of 54 distinct mutant IDUA alleles were identified, 34 of which were novel including 12 missense mutations, 2 nonsense mutations, 12 splicing mutations, 5 micro-deletions, 1 micro-duplication 1 translational initiation site mutation, and 1 'no-stop' change (p.X654RextX62). Evidence for the pathological significance of all novel mutations identified was sought by means of a range of methodological approaches, including the assessment of evolutionary conservation, RT-PCR/in vitro splicing analysis, MutPred analysis and visual inspection of the 3D-model of the IDUA protein. Taken together, these data not only demonstrate the remarkable mutational heterogeneity characterizing type 1 mucopolysaccharidosis but also illustrate our increasing ability to make deductions pertaining to the genotype-phenotype relationship in disorders manifesting a high degree of allelic heterogeneity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.