Perylene-3,4:9,10-tetracarboxylic acid bisimide ("PB") and its derivatives are applied as fluorescent dyes in organic materials owing to their excellent photochemical stability as well as the high fluorescence quantum yields. [1,2] The strong hydrophobic stacking interactions between the PB chromophores make this dye an important building block for functional supramolecular architectures. [1,3] Based on these properties, PB in the dimeric form should be also of potential interest as a probe for fluorescent DNA/RNA analytics as well as for functionalized DNA-based architectures. Its noncovalent DNA-binding interactions have been studied with PB derivatives that had been modified with spermine [4] or other amines.[5] Moreover, an increasing number of publications about covalent modifications of oligonucleotides with PB have appeared over the last few years. [6][7][8][9][10][11][12] Recently, we presented a facile route for the synthetic incorporation of PB as an artificial DNA base in order to study the stacking interactions of this dye at specific sites in duplex DNA.[13]Herein, we present the evaluation of fluorescent PB dimers for the optical functionalization of DNA using three representative duplexes (DNA1, DNA3, and DNA4 a). For the synthetic modification of the corresponding oligonucleotides with the PB chromophore (Scheme 1), the 2-deoxyribofuranoside moiety was replaced by an acyclic linker system which is tethered to one of the imide nitrogens of the PB dye.[13] This linker allows the chromophore to intercalate in the base stack while providing high chemical stability during the automated phosphoramidite chemistry. [13,14] DNA1 bears one interstrand PB dimer inside the duplex, whereas DNA3 contains a PB monomer outside the duplex at each 5' end. Both duplexes contain palindromic sequences. When DNA1 and DNA3 are excited at 505 nm, the fluorescence spectra of both duplexes (Figure 1) are dominated by a broad band at % 660 nm without fine structure. This band corresponds to the excimer-type emission of the PB dimer that has been observed in nanoaggregates of perylene bisimides. [3,8,15] The UV/Vis spectra of DNA1 and DNA3 (Figure 2) at low temperatures show two major bands that are hyposochromically (506 nm) or bathochromically (545 nm) shifted in comparison to the 0!1 and 0!0 vibronic transitions of the PB monomer.[16] This result shows the strong p-p excitonic interactions of the two PB chromophores inside (DNA1) and outside (DNA3) of the duplex. [15] Both the excimer-type fluorescence band and the shifted absorption bands of DNA1 vanish at higher temperatures. It is remarkable that this occurs cooperatively at a temperature (75.9 8C) that corresponds to the cooperative thermal dehybridization of the whole DNA duplex, which is typically measured at 260 nm (T m = 78.6 8C). Apparently the intact helical duplex is required as a framework for the PB dimer formation. In comparison to the unmodified DNA2 (T m = 76.2 8C) the duplex DNA1 is stabilized by 2.4 8C through the Scheme 1. PB-modified duplexes DNA1-DNA3...
Perylene-3,4:9,10-tetracarboxylic acid bisimides (PBs) were incorporated synthetically into oligonucleotides by using automated DNA building-block chemistry. The 2'-deoxyribofuranoside of the natural nucleosides was replaced by (S)-aminopropan-2,3-diol as an acyclic linker between the phosphodiester bridges that is tethered to one of the imide nitrogen atoms of the PB dye. The S configuration of this linker was chosen to mimic the stereochemical situation at the 3'-position of the natural 2'-deoxyribofuranosides. By using this strategy, up to six PB dyes were incorporated in the middle of 18-mer DNA duplexes by using interstrand alternating sequences of PBs with thymines or an abasic site analogue. Both PB dimers and PB hexamers as artificial base substitutions inside the duplexes yield characteristic excimer-type fluorescence. The stacking properties of the PB chromophores are modulated by the presence or absence of thymines opposite the PB modification site in the counterstrand. The interstrand PB dimers can be regarded as hydrophobically interacting base pairs, which display a characteristic fluorescence readout signal. Hence, for the PB hexamers, we proposed a zipperlike recognition motif that is formed inside duplex DNA. The PB zipper shows characteristic excimer-type emission as a fluorescence readout signal for the pairing interaction.
Perylen-3,4:9,10-tetracarbonsäurebisimid (PB) und dessen Derivate werden aufgrund ihrer hervorragenden photochemischen Stabilität und der hohen Quantenausbeuten gerne als Fluoreszenzfarbstoffe in organischen Materialien eingesetzt. [1,2] Die starken hydrophoben Wechselwirkungen zwischen den einzelnen PB-Chromophoren machen diesen Farbstoff zu einem wichtigen Baustein für funktionelle supramolekulare Architekturen. [1,3] Betrachtet man die Kombination dieser Eigenschaften, erscheint es interessant, PB in der dimeren Form auch als Sonde für die fluoreszente DNAund RNA-Analytik einzusetzen. Die nicht-kovalente Bindung an DNA wurde mit PB-Derivaten untersucht, die mit Spermin [4] oder anderen Aminen modifiziert wurden.[5] Darüber hinaus erschien in den letzten Jahren eine zunehmende Zahl von Publikationen, die die kovalente Modifikation von Oligonucleotiden mit PB beschreiben. [6][7][8][9][10][11][12] Kürzlich stellten wir eine einfache Syntheseroute für den Einbau von PB als artifizielle DNA-Base vor, um die Stapelungseigenschaften dieses Farbstoffes an spezifischen Stellen in Doppelstrang-DNA untersuchen zu können.[13] Hier präsentieren wir nun die Evaluierung der optischen Funktionalisierung mit PBDimeren anhand dreier exemplarischer Doppelstränge (DNA1, DNA3 und DNA4 a). Für die synthetische Modifizierung der entsprechenden Oligonucleotide mit dem PBChromophor (Schema 1) wurde der 2-Desoxyribofuranosidteil durch ein acyclisches Linkersystem ersetzt, das über eines der beiden Imid-Stickstoffatome des PB-Farbstoffes angeknüpft wurde.[13] Dieser Linker ermöglicht es dem Chromophor, in den Basenstapel zu interkalieren, und er weist die für die automatisierte Phosphoramiditchemie erforderliche hohe chemische Stabilität auf. [13,14] DNA1 enthält ein Interstrang-PB-Dimer, wohingegen DNA3 je ein PB-Monomer außerhalb des Doppelstrangs an beiden 5'-Enden trägt. Beide Doppelstränge weisen palindromische Sequenzen auf. Die Fluoreszenzspektren beider Doppelstränge DNA1 und DNA3 (Anregung bei 505 nm) werden von einer breiten Bande bei 660 nm ohne Feinstruktur dominiert (Abbildung 1). Diese excimerartige Emission des PB-Dimers wurde auch in Nanoaggregaten von Perylenbismiden beobachtet. [3,8,15] Die UV/Vis-Spektren von DNA1 und DNA3 (Abbildung 2) zeigen bei niedriger Temperatur zwei Hauptbanden, die im Vergleich zu den vibronischen Übergängen (0!1 und 0!0) des PB-Monomers hypsochrom (506 nm) bzw. bathochrom (545 nm) verschoben sind.[16]Dieses Resultat belegt die starken excitonischen p-p-Wechselwirkungen zwischen den beiden PB-Chromophoren im Inneren des Doppelstrangs (DNA1) bzw. außen am Doppelstrang (DNA3).[15]Sowohl die excimerartige Fluoreszenzbande als auch die verschobenen Absorptionsbanden von DNA1 verschwinden bei höheren Temperaturen. Besonders bemerkenswert ist Schema 1. PB-modifizierte Doppelstränge DNA1-DNA3, DNA4 a-DNA4 e. Abbildung 1. Temperaturabhängige Fluoreszenzspektren von DNA1 (oben) und DNA3 (unten), 1.25 mm DNA-Doppelstrang, 10 mm Na-P iPuffer, 250 mm NaCl, pH 7, Anregung bei 505 nm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.