Objective: To assess serum concentrations of lipopolysaccharide binding protein (LBP) in preterm infants with neonatal bacterial infection (NBI). Methods: Blood samples were analysed of 57 preterm (28 +1 to 36 +6 , median 33 +2 weeks gestation) and 17 term infants admitted to the neonatal intensive care unit within the first 72 hours of life with suspicion of NBI. Samples were obtained at first suspicion of sepsis and after 12 and 24 hours. Diagnosis of NBI was confirmed by raised concentrations of C reactive protein and/or interleukin 6. The influence of gestational age and labour was analysed. Results: Maximum LBP concentrations in infants with NBI were greatly increased compared with infants without NBI (13.0-46.0 mg/ml (median 20.0 mg/ml) v 0.6-17.4 mg/ml (median 4.2 mg/ml)). LBP concentrations in infected infants were not yet significantly raised when NBI was first suspected. The LBP concentrations of preterm infants were comparable to those of term infants. Regression analysis revealed no significant effect of labour or gestational age on LBP. Conclusions: Raised LBP concentrations indicate NBI in preterm and term infants. Preterm infants of . 28 weeks gestation seem to be capable of producing LBP as efficiently as term infants. Neonatal LBP concentrations are not influenced by labour. LBP may be a useful diagnostic marker of NBI in preterm infants.
Background: It has been shown that a high percentage of interleukin-8 (IL-8) in blood is cell associated. Recently, a simple method for determination of cell-associated IL-8 in whole blood after cell lysis has been described. The purpose of this study was to evaluate this method, to examine the influence of preanalytic sample handling, and to establish the concentration range of total IL-8 and its relation to age and sex in healthy subjects. Methods: Total IL-8 content of whole blood was determined after lysing blood cells with Milenia® cell lysis solution. IL-8 in the resulting blood lysate was measured with the IMMULITE® IL-8 immunoassay. Results: When freshly drawn blood was stored up to 48 h on ice, no significant changes in total IL-8 were measured in the subsequently prepared lysate, whereas with storage at room temperature, total IL-8 increased after 3 h from 94 ± 13 ng/L to 114 ± 16 ng/L (n = 10). In lysate stored for 48 h at 4 °C, marginal changes of the IL-8 concentration were noted, with storage at room temperature, only 76% ± 5% (n = 12) of initial concentration was recovered. From lysate frozen at −20 and −80 °C, respectively, 84% ± 4% and 93% ± 2% of initial IL-8 was recovered after 70 days (n = 10). IL-8 was measured with comparable precision in plasma (CV, 3.2–4.2%) and blood lysate (CV, 3.7–4.1%). When plasma was diluted with cell lysis solution, a slightly overestimated recovery (125% ± 3%) was observed; for lysate specimens with a cell lysis solution content ≥75%, the recovery after dilution was 98% ± 2%. In lysate prepared from 12 blood samples with exogenous IL-8 added, IL-8 recovery was 104% ± 2% (recovery from plasma <35%). The median total IL-8 in blood lysates from 103 healthy subjects (22–61 years) was 83 ng/L of blood (2.5–97.5 percentile range, 49–202 ng/L of blood). In females but not in males, total IL-8 increased significantly with advancing age (P <0.002). We found grossly increased total IL-8 in six pregnant women with amniotic infection syndrome. Conclusions: The evaluated method allows the assessment of total IL-8 in blood with good performance when appropriate conditions of sample pretreatment are considered. The values in healthy volunteers all were above the detection limit of the IL-8 assay; therefore, slight changes of total IL-8 could be noted. Thus, the present method is a suitable tool to study the diagnostic relevance of total IL-8 in blood.
To assess the effect of gestational age and labor on the interleukin-8 (IL-8) concentration in whole cord blood and serum, IL-8 levels were determined simultaneously in cord blood serum and lysate in 134 infants. Following the elimination of some of the samples due to exclusion criteria, the data for 99 uninfected infants (71 term and 28 preterm) and 9 infants with neonatal bacterial infection delivered either vaginally or by elective or emergency cesarean section were analyzed. The effects of labor and gestational age were tested by analysis of variance. IL-8 was not detectable in the serum of 25 infants, whereas IL-8 levels in whole blood were measurable in all of the samples. The median IL-8 conncentrations in whole cord blood lysate were 106 pg/ml (range, 20 to 415 pg/ml) in preterm infants and 176 pg/ml (range, 34 to 1,667 pg/ml) in term infants. In contrast to the IL-8 levels in serum, IL-8 levels in whole blood were reduced after ECS. Gestational age had no independent effect on the IL-8 concentrations in either serum or whole blood; these concentrations increased in infected infants after labor. We conclude that the neonatal proinflammatory response to labor stress was more evident in the concentrations of IL-8 in whole blood than in serum. The levels of IL-8 in whole-blood lysate reflect proinflammatory stimulation in neonates and may be a useful diagnostic tool for the early diagnosis of neonatal infection.Interleukin-8 (IL-8) belongs to the class of proinflammatory "CC" chemokines defined by the position of two cysteine groups and is synthesized predominantly by monocytes. Its active form effectively activates neutrophil granulocytes, advancing the chemotaxis and synthesis of myeloperoxidase, thus suggesting a critical role in host defense to infectious diseases (1, 2).The IL-8 concentration in serum has been studied as a diagnostic marker of neonatal bacterial infection (NBI) (10, 11) and has been shown to be an early marker of neonatal bacterial infection, whereas the concentration of C-reactive protein (CRP) increases after 12 to 24 h in the course of systemic infectious disease. A "diagnostic gap " exists between the decline of IL-8 after 4 to 6 h and the increase in C-reactive protein at 12 to 24 h, which is a well-established marker of confirmed bacterial infection. Due to the rapid serum clearing of IL-8, its value as a monitoring parameter of infectious disease may be limited. In vivo, a large proportion of IL-8 is associated with erythrocytes and leukocytes (polymorphonuclear leukocytes and peripheral blood mononuclear cells), and the concentration in serum represents only a small fraction of the total amount of IL-8. The measurement of cell-associated IL-8 reflects more quantitatively its production and adds information regarding the stage of the disease and the patient's inflammatory response (7,9,13,14). Total IL-8 can be measured in whole blood after cell lysis with a good analytical test (16). In healthy adults, we previously observed an IL-8 peak level of Ͻ12 pg/ml with a median of 83 p...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.